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a b s t r a c t 

Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, 

with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers 

often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gra- 

dient operator designed to address these issues. In each case, the horizontal acceleration is computed as 

an integration of the contact pressure force that acts along the perimeter of an associated momentum 

control-volume. A pair of new schemes are developed by exploring different control-volume geometries. 

Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated 

using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance 

in a non-linear manner. Numerical experiments show that the new methods achieve high levels of con- 

sistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer 

geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results 

suggest that the new pressure gradient formulations may be appropriate for general circulation models 

that employ hybrid vertical coordinates and/or terrain-following representations. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

a  

i  

c  

p  

e  

l  

w  

e  

a  

t  

d  

o  

e

C

m

i  

n  

w  

c

 

g  

g  

p  

v  

e  

t  

p  

n  

i  

s  

h

1

. Introduction 

The development of flexible layered ocean models, capable of

dapting to the complex vertical structure associated with strat-

fied geophysical flows, represents an important ongoing numeri-

al challenge in global climate modelling and numerical weather

rediction. Compared to conventional fixed-grid formulations, lay-

red models, in which the fluid is subdivided into a set of curvi-

inear layers, offer an opportunity to improve the fidelity with

hich vertical ocean transport processes are represented ( Griffies

t al., 20 0 0 ). In this study, the issue of constructing a consistent

nd accurate numerical formulation for evaluation of the horizon-

al pressure gradient force in arbitrarily layered ocean models is

iscussed in detail. While seemingly innocuous, the development

f stable and consistent discretisation schemes presents a signif-
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cant numerical challenge, due to the complex interplay between

on-linearities in the underlying fluid equation-of-state, the depth-

ise stratification profiles, and the sloping geometry of the dis-

rete fluid layers themselves. 

This paper describes two new formulations for the pressure

radient operator that attempt to address these difficulties. We be-

in with a description of the overall numerical formulation, ex-

ressing the layered equations-of-motion in terms of an arbitrary

ertical coordinate. In the following sections we briefly discuss sev-

ral well-known instabilities associated with conventional horizon-

al pressure gradient formulations; review the semi-analytic ap-

roach of Adcroft et al. (2008) ; and then present our new tech-

iques. Particular attention is paid to the development of flex-

ble, high-order accurate numerical integration procedures, de-

igned to preserve hydrostatic balance in the presence of the var-

ous non-linearities imposed by the thermodynamic and geomet-

ical structure of the problem. The experimental results presented

n Section 6 are designed to assess the consistency, accuracy and

tability of the new schemes, contrasting the relative performance

f the two new formulations for several two-dimensional ocean-at-

est type benchmark problems. 

http://dx.doi.org/10.1016/j.ocemod.2017.05.003
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2. A simplified layered ocean model 

Following Bleck (2002) , Adcroft and Hallberg (2006) , Higdon

(20 02) ; 20 05 ) and Leclair and Madec (2011) , the hydrostatic and

non-Boussinesq equations of motion for a rotating geophysical

fluid can be expressed in terms of a generalised vertical coordinate

s as a set of five prognostic conservation laws, with two equations

for the horizontal velocity components, two balance-laws for a pair

of thermodynamic variables, an evolution equation for a pressure

thickness variable, and a diagnostic expression for the equation-of-

state of the fluid. Specifically, adopting similar notion to that in-

troduced in Bleck (2002) , the continuous equations can be written

as 

∂ t ( u h ) + (u h · ∇ s ) u h + 

˙ s ∂ s ( p ) ∂ p ( u h ) + f u 

⊥ 
h = ∇ s ( �) 

+ ρ−1 ∇ s ( p ) + F u h , (1)

∂ p (�) = ρ−1 ( T , S, p ) , (2)

∂ t (∂ s (p)) + ∇ s · ( u h ∂ s (p) ) + ∂ s ( ̇ s ∂ s (p) ) = F p , (3)

∂ t (∂ s (p) T ) + ∇ s · ( u h ∂ s (p) T ) + ∂ s ( ̇ s ∂ s (p) T ) = F T , (4)

∂ t (∂ s (p) S) + ∇ s · ( u h ∂ s (p) S ) + ∂ s ( ̇ s ∂ s (p) S ) = F S . (5)

Here u h = (u, v ) is the horizontal velocity field, u 

⊥ 
h 

= (−v , u ) , and

f is the Coriolis parameter. � = gz is the geopotential, where g is

the acceleration due to gravity and z is the height from a refer-

ence surface. The differential quantity ∂ s ( p ) is a vertical pressure-

thickness variable and ˙ s is an associated flow-rate, normal to sur-

faces of constant s. T and S are the scalar temperature and salin-

ity distributions, respectively. Note that the specific choice of ther-

modynamic pairing is dependent on the equation of state used,

with, for example, potential temperature and practical salinity

( T , S ) = 

(
θ, S p 

)
used in a number of existing thermodynamic mod-

els ( Wright, 1997 ), while recent formulations ( Roquet et al., 2015;

McDougall and Barker, 2011; Jackett et al., 2006 ) necessitate a

switch to the conservative temperature and absolute salinity pair

( T , S ) = ( �, S A ) . The forcing terms F u h , F p , F T and F S incorporate

any additional sources and sinks associated with each quantity, in

addition to the effect of generalised diffusion/mixing on both the

momentum and thermodynamic variables, respectively. The fluid

density ρ = f ( T , S, p ) is diagnosed via a general non-linear equa-

tion of state, and the geopotential � = gz is expressed in terms of

hydrostatic balance. The differential operator ∂ t denotes a deriva-

tive with respect to time, ∂ s denotes a derivative with respect to

the generalised vertical coordinate s . ∇ s = 

(
∂ x , ∂ y , 0 

)
is a layerwise

gradient operator, taken along surfaces of constant s . Expressions

for the transport of passive tracers can be added to this system

via the inclusion of additional advection-diffusion equations of the

form of ( Eq. (5) ). 

In this study, a layered Arbitrary Lagrangian Eulerian (ALE) for-

mulation is employed, discretising the vertical coordinate s into a

stack of discrete fluid layers, and setting the cross-coordinate flow-

rate ˙ s to zero. Such a constraint implies dynamic motion of the

layer interface surfaces themselves, with the thickness of the fluid

layers evolving in time due to mass conservation. Integrating ( Eq.

(1) –(5) ) over the vertical extent of each layer and setting ˙ s = 0 , the

semi-discrete equations for a given layer k can be written 

∂ t 
(
ū h,k 

)
+ ( ̄u h · ∇ s ) ū h + f ̄u 

⊥ 
h 

= 

1 

�p 

∫ 
∇ s ( �) + ρ−1 ∇ s ( p ) d p + F̄ u h ,k , (6)
k k 
 t (�p k ) + ∇ s ·
(
ū h,k �p k 

)
= �p k F̄ p,k , (7)

 t 

(
�p k T̄ k 

)
+ ∇ s ·

(
ū h,k �p k T̄ k 

)
= �p k F̄ T,k , (8)

 t 

(
�p k S̄ k 

)
+ ∇ s ·

(
ū h,k �p k S̄ k 

)
= �p k F̄ S,k . (9)

ere ( ̄· ) = 

1 
�p 

∫ p t 
p b 

( · ) d p denotes a layer-mean quantity, integrated

etween the lower and upper interfaces p b and p t that define the

ertical extent of each layer with respect to pressure. The associ-

ted discrete pressure-thickness variable �p is simply the difference

n layer interface pressures �p = p b − p t . Integrals of the pressure

radient terms in the momentum equation ( Eq. (6) ) have be writ-

en explicitly here for consistency with the finite-volume type for-

ulations developed in Sections 4 and 5 . 

.1. Existing formulations for the horizontal pressure gradient 

perator 

Numerical issues related to the discretisation of the horizontal

ressure gradient force have long plagued the development of lay-

red ocean models. These numerical errors typically manifest as

purious horizontal accelerations, causing the model to erroneously

drift’ away from the desired equilibrium state over time. The gen-

sis of such difficulties can be explained by examining the interac-

ion of the two differential operators associated with the pressure

radient force in Eq. (6) 

GF = ∇ s ( �) + ρ−1 ∇ s ( p ) . (10)

iven particular (conventional) choices of vertical coordinate,

amely s = z or s = p, the form of the pressure gradient operator

an be simplified, with one of the two gradient terms ( ∇ s ( �) and
−1 ∇ s ( p ) ) evaluating to zero. Specifically, in conventional height-

ased coordinates ∇ s ( �) = ∇ z ( �) = 0 , while in a pressure-based

oordinate system ρ−1 ∇ s ( p ) = ρ−1 ∇ p ( p ) = 0 . Unfortunately, this

xact cancellation is not preserved when adopting arbitrary ver-

ical coordinate systems appropriate for layered ocean modelling,

uch as terrain-following coordinates and/or time- and space-

ependent Lagrangian representations. In such cases, a straight-

orward discretisation of the two gradient operators in Eq. (10) can

ead to inconsistencies, with the interaction of the numerical trun-

ation errors associated with each gradient term leading to inexact

ancellation. Noting that the magnitude of these two terms is typi-

ally large compared to the dynamical signal ( Adcroft et al., 2008 ),

t can be understood that residual errors in the evaluation of the

ressure gradient force can lead to non-negligible spurious hori-

ontal motion. This behaviour is exacerbated when the fluid layers

re steeply sloping and the imposed thermodynamic stratification

rofiles are highly non-uniform. 

Conventionally, layered isopycnic-type models ( Bleck, 2002 )

ave sought to exploit the so-called Montgomery-potential form

f the horizontal pressure gradient operator. Setting M = p/ρ + �,

he horizontal acceleration can be transformed as follows 

GF = ∇ s ( M ) + p∇ s (ρ
−1 ) . (11)

ote that in an exact density-following coordinate system ( s =
), the second term in Eq. (11) can be seen to vanish, with

p∇ s (ρ−1 ) = p∇ ρ (ρ−1 ) = 0 . While such a result is attractive from a

heoretical standpoint, it should be noted that practical isopycnic-

ype models do not typically adopt a coordinate system based

n the exact in-situ densities, preferring instead hybrid potential-

ensity-based representations, with height-based transitions em-

loyed near layer outcropping ( Bleck, 2002 ). Nonetheless, it can be

rgued that use of the Montgomery potential form serves to mit-

gate associated numerical errors, through a minimisation of the
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Fig. 1. Sloping quadrilateral control-volumes �i +1 / 2 ,k associated with the layer-wise pressure gradient formulation. The staggered control-volumes �i +1 / 2 ,k are formed by 

joining the top and bottom edge-midpoints of adjacent mass grid-cells. Note that �i +1 / 2 ,k achieves a piece-wise linear approximation to bottom topography. 
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agnitude of the second gradient term p∇ s 

(
ρ−1 

)
. In practice, such

onsiderations are known not to be fully satisfactory, with studies

f models based on layerwise finite-difference type discretisations

f the Montgomery potential reported to suffer from serious issues

f instability ( Adcroft et al., 2008 ). 

Alternatively, finite-volume type discretisations for the pressure

radient operator have also been proposed, seeking to properly ac-

ount for the interaction between layerwise geometry, pressure-

ompressibility and thermodynamic stratification effects through

he evaluation of a suitable set of boundary integrals. Specifically,

he net horizontal pressure force acting on a layerwise control-

olume can be computed by integration of the so-called contact

ressure force acting at the boundary of each control-volume. Such

pproaches have been pursued fruitfully by a number of authors,

ncluding Lin (1997) , Shchepetkin and McWilliams (2005) and

dcroft et al. (2008) . More recently, such finite-volume approaches

ave been supplemented by so-called semi-analytic methods, pro-

iding improved accuracy and efficiency. In Adcroft et al. (2008) , a

ydrostatically consistent integration method is presented, where

xact vertical profiles of geopotential are computed using analytic

ntegration rules. It was shown that, under certain simplifying as-

umptions, use of the semi-analytic pressure gradient formulation

ed to significant improvements in the stability and consistency of

n associated layered isopycnic-type model. 

A variety of high-order accurate finite-difference and finite-

olume type methods have also been pursued in the develop-

ent of σ -type ocean models ( McCalpin, 1994; Chu and Fan, 1997;

erntsen, 2011 ) with the performance of several such schemes re-

orted in Berntsen and Oey (2010) . Such approaches share a num-

er of common elements with the new formulations presented

n the current work, with the horizontal pressure gradient force

omputed via contour integrals and high-order accurate interpola-

ion schemes. Note that the new formulations developed here are

ot restricted to σ -type vertical coordinate systems, but are gener-

lised to arbitrary layered representations. 

. The semi-analytic finite-volume formulation 

A finite-volume scheme for evaluation of the horizontal pres-

ure gradient terms in the momentum equation ( Eq. (6) ) can be

ormulated through a summation of the contact pressure force act-

ng at the boundaries of the piecewise linear control-volumes as-

ociated with discrete momentum components. In integral form 

GF = 

1 

�x i + 1 ,k 

1 

�p i + 1 ,k 

∮ 
∂�

� d p , (12) 
2 2 t  
 

∂�
� d p = 

∫ p t r 

p b r 

� d p + 

∫ p t l 

p t r 

� d p + 

∫ p b l 

p t l 

� d p + 

∫ p b r 

p b l 

� d p , 

(13) 

here the contour integral has been split into the four seg-

ents associated with the edges of the two-dimensional quadri-

ateral control-volume � associated with a given horizontal ve-

ocity variable, as illustrated in Fig. 1 . Note that a staggered

orizontal arrangement is employed, with the velocity control-

olumes � located between the midpoints of associated mass lay-

rs. This arrangement is consistent with a conventional C-type

rid-staggering, in which velocity variables are offset from adja-

ent thermodynamic and layer-thickness quantities. Adopting the

onventional nomenclature, each horizontal velocity component

 i +1 / 2 ,k is staggered between the thermodynamic variables ( T i, k ,

 i, k ) and (T i +1 ,k , S i +1 ,k ) and layer pressure-thickness quantities δi, k 

nd δi +1 ,k , where the ( i, k ) indices denote the horizontal and ver-

ical directions, respectively. The fluid pressure is staggered in the

ertical direction, and is stored at the layer interfaces p i,k +1 / 2 for

ach column. Note that the depth-wise index k increases down-

ard from the fluid surface. In this study, the mass grid-cells are

eferred to as the primary fluid-columns , while the velocity grid-

oints are termed the staggered or dual control-volumes. 

Noting that the geopotential � is a non-linear function of both

he fluid pressure p and thermodynamic variables T ( p ), S ( p ), it is

lear that discretisation of the contact pressure expressions ( Eq.

12) ) represents a significant numerical challenge. Specifically, it

s required that any numerical scheme designed to discretise the

ine integral terms ( Eq. (13) ) faithfully account for this complex set

f non-linear dependencies. Failure to adequately capture such ef-

ects can cause an imbalance in the contact pressure force com-

uted along each segment of the control-volume boundary. This

ffect leads to the well-known issues of horizontal pressure gradi-

nt force error and instability, as outlined in the previous section. 

In Adcroft et al. (2008) , the so-called semi-analytic formu-

ation was proposed, where, under the assumption of a pre-

cribed equation-of-state and piecewise constant thermodynamic 

rofiles, an analytic solution to the hydrostatic relationship was de-

ived. Specifically, given a simplified equation-of-state of the form

 Wright, 1997 ) 

−1 ( T , S, p ) = A ( T , S ) + 

λ( T , S ) 

P ( T , S ) + p 
, (14) 

here A ( T , S ) = A, λ( T , S ) = λ and P ( T , S ) = P (under the assump-

ion of piecewise constant T, S profiles), as per Adcroft et al. (2008) ,
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the exact variation in geopotential can be computed analytically

as 

�(p t ) − �(p b ) = 

∫ p b 

p t 

ρ−1 ( T , S, p ) d p 

= �p 

(
A + 

λ

2 ε(P + p̄ ) 
ln 

∣∣∣1 + ε

1 − ε

∣∣∣)

= �p 

( 

A + 

λ

(P + p̄ ) 

∞ ∑ 

i =1 

ε2 i −2 

2 i − 1 

) 

, (15)

where the expressions have been simplified following the nomen-

clature of Adcroft et al. (2008) , such that 

�p = p b − p t , p̄ = 

p b + p t 

2 

, ε = 

�p 

2(P + p̄ ) 
. (16)

Using Eq. (15) , expressions for the pressure gradient force itself can

be derived. The contributions from the left- and right-hand edges

of the control-volume can be computed exactly, through an addi-

tional analytic integration of Eq. (15) over the respective edge seg-

ments ∫ p t 

p b 

� d p = �p 

(
�b + 

1 

2 

A �p + λ
(

1 − 1 − ε

2 ε
ln 

∣∣∣1 + ε

1 − ε

∣∣∣))
= �p 

( 

�b + 

1 

2 

A �p + λ

( 

ε − (ε2 − ε3 ) 
∞ ∑ 

i =1 

ε2 i −2 

2 i + 1 

) ) 

. 

(17)

As per Adcroft et al. (2008) , evaluation of the infinite series in Eq.

(15) and (17) can be computed approximately by summing over a

finite number of terms. Specifically, evaluation of the first six terms

in each series has been reported to lead to approximations accu-

rate to within numerical rounding errors. 

Evaluation of the line integral terms along the sloping upper

and lower control-volume edges is significantly less straightfor-

ward, due to the horizontal variation in both the fluid pressure-

thickness and thermodynamic variables over the cell width. In

Adcroft et al. (2008) , it is remarked that these terms cannot read-

ily be evaluated analytically, and a numerical integration approach

is pursued instead. Specifically, Eq. (15) is used to compute the ex-

act increment in geopotential height over the layer-thickness, with

a horizontal interpolation of the coefficients in the equation-of-

state ( Eq. (14) ) employed to account for variations in the thermo-

dynamic quantities along the layer. Given a distribution of geopo-

tential values over the control-volume edges, the resulting contact

pressure force integrals can be computed as weighted sums, as

per standard numerical quadrature techniques ( Golub and Welsch,

1969; Abramowitz and Stegun, 1964 ). 

A detailed comparison of the performance of the semi-analytic

finite-volume formulation and a conventional Montgomery-

potential approach was presented in Adcroft et al. (2008) . The

semi-analytic formulation was shown to outperform the con-

ventional approach, offering significant improvements to both

the consistency and accuracy of results obtained using a layered

isopycnic ocean model ( Hallberg and Rhines, 1996; Hallberg,

2005 ). Specifically, the semi-analytic scheme was shown to

exactly preserve hydrostatic consistency in simplified ocean condi-

tions, and to suppress grid-scale oscillations generated using the

potential-based approach. 

4. Method I: A layer-wise finite-volume formulation 

While offering significant improvements over conventional two-

term pressure gradient formulations, the flexibility of the origi-

nal semi-analytic finite-volume approach of Adcroft et al. (2008) is

limited by its underlying assumptions. Specifically, the exact ana-

lytic integration results developed in Adcroft et al. (2008) rely on a
umber of factors, including: (i) the assumption of piecewise con-

tant thermodynamic profiles over the layer thicknesses, and (ii)

he use of a simplified equation-of-state ( Wright, 1997 ). These con-

traints encourage the development of more generalised methods. 

Dispensing with analytic integration, a new, flexible finite-

olume formulation for evaluation of the pressure gradient force

ased solely on high-order numerical integration techniques is pro-

osed. Such an approach is designed to extend the semi-analytic

ormulation presented previously to support more realistic, non-

niform thermodynamic profiles, and arbitrary equation-of-state

efinitions. 

.1. Preliminaries: Numerical integration 

In contrast to Adcroft et al. (2008) , a numerical evaluation of

he line-integral terms in Eq. (13) is sought. This integration is a

wo-step process, firstly seeking to assemble the column-wise pro-

les of geopotential �i , through integration of the hydrostatic re-

ationship, before evaluating the contact pressure integrals given

n Eq. (13) . A summation of the contact pressures about the four

ides of each control-volume �
i + 1 

2 
,k 

leads to an approximation of

he pressure gradient force, as per Eq. (12) . The vertical profile of

eopotential �i in each fluid column i is given by 

i (p) − �b = 

∫ p 

p b 

ρ−1 d p, (18)

here �b and p b are the values of geopotential and fluid pres-

ure at the base of the column, respectively. The fluid density ρ
s assumed to be a fully non-linear equation-of-state, such that

= f (T i , S i , p) , where T i ( p ) and S i ( p ) are arbitrary vertical profiles

f the thermodynamic quantities within the associated column. 

Recalling that �i ( p ) varies non-linearly over the stack of

ontrol-volumes �i +1 / 2 ,k in each column, a suitably accurate nu-

erical integration of Eq. (18) is sought. Such behaviour can be

ealised using an appropriate set of numerical-quadrature rules

 Golub and Welsch, 1969; Abramowitz and Stegun, 1964 ) of suf-

ciently high-order. The use of quadrature rules requires the in-

egrand in Eq. (18) | the reciprocal of the fluid density | be eval-

ated at a discrete set of quadrature-points distributed over the

ayer thicknesses. Recalling that evaluation of the contact pressure

ntegrals requires a two-step integration process, a non-standard

orm of numerical quadrature is employed in this study, designed

o allow the same set of function evaluations to be re-used within

ach pass of the nested integration steps. Noting that the density

f seawater is typically specified in terms of complex non-linear

unctions ( McDougall and Barker, 2011 ), a minimisation of function

valuations is an important consideration when seeking to con-

truct efficient numerical schemes. 

The geopotential profile �i, k ( p ) in the k -th layer of the i -th col-

mn can be found by integrating Eq. (18) , where a suitable poly-

omial approximation to ρ−1 is exploited 

i,k (p) − �i,k + 1 2 

= 

∫ p 

p 
i,k + 1 

2 

ρ−1 d p � �p 

∫ ξ

0 

a 1 + a 2 ξ + · · · + a n ξ
n −1 d ξ

� �p 

(
a 1 ξ + 

1 

2 

a 2 ξ
2 + · · · + 

1 

n 

a n ξ
n 
)
. (19)

ere the vertical variation in �i, k is computed for a given layer

panning between the upper and lower pressure levels p i,k −1 / 2 and

p i,k +1 / 2 , such that the layer thickness �p = p i,k +1 / 2 − p i,k −1 / 2 . Ad-

itionally, the non-dimensional variable ξ has been introduced to

ap the integration region onto the uniform segment ξ ∈ [0, 1].

uch a mapping can be expressed through the following transfor-
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p i,k (ξ ) = p i,k − 1 
2 

+ ξ
(

p i,k + 1 2 
− p i,k − 1 

2 

)
. (20) 

ntegration of the hydrostatic expression is completed by deter-

ining the polynomial coefficients a 1 , a 2 , . . . , a n ∈ R in Eq. (19) .

his process is based on the construction of a polynomial ap-

roximation to ρ−1 (ξ ) on ξ ∈ [0, 1], and requires the sam-

ling of the fluid density ρ( T i, k ( ξ l ), S i, k ( ξ l ), p i, k ( ξ l )) at a se-

uence of integration-points ξ l ∈ [0, 1] distributed over the integra-

ion segment. This curve-fitting procedure is described in detail in

ppendix A . The resulting polynomial coefficients can be expressed

s the solution to a set of linear equations 

 

 

 

 

 

 

a 1 

a 2 

. . . 

a n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= R 

−1 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρ−1 

(
T (ξ1 ) , S(ξ1 ) , p(ξ1 ) 

)
ρ−1 

(
T (ξ2 ) , S(ξ2 ) , p(ξ2 ) 

)
. . . 

ρ−1 

(
T (ξn ) , S(ξn ) , p(ξn ) 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (21) 

here R 

−1 is an n × n matrix of reconstruction coefficients that

re pre-computed for a given quadrature rule. Clearly, the degree

f the interpolating polynomial is related to the number of inte-

ration points used, with higher-order interpolants corresponding

o additional sampling points. In this study we adopt the conven-

ional terminology, referring to a scheme involving n integration

oints as an n -point quadrature rule. 

Note that in Eq. (21) , the sampling of the fluid density ρ( ξ l )

equires a corresponding evaluation of the associated thermody-

amic variables T i, k ( ξ l ) and S i, k ( ξ l ). In this study, such values

re obtained using high-order piecewise polynomial reconstruc-

ions ( Colella and Woodward, 1984; White and Adcroft, 2008; En-

wirda and Kelley, 2016 ) in which a set of vertical polynomial pro-

les T i, k ( ξ ) and S i, k ( ξ ) are reconstruced from the associated layer-

ise degrees-of-freedom. Specifically, the piecewise-linear (PLM), 

iecewise-parabolic (PPM) and piecewise-quartic methods (PQM)

re considered in the current work, providing a family of high-

rder accurate, essentially monotonic polynomial reconstructions

or the thermodynamical quantities. The fluid pressure p i, k ( ξ ) is

ssumed to vary linearly within each control-volume and is ob-

ained at the integration points ξ l through a corresponding bi-

inear interpolation scheme. 

.2. Evaluation of integral terms over the left- & right-hand segments

Returning to the evaluation of the integral expressions for the

ressure gradient force acting over the control-volume �i +1 / 2 ,k ,

ontributions from the left- and right-hand side integral terms are

rst considered 

 

∂�
� d p = 

∫ p t r 

p b r 

� d p + 

∫ p b l 

p t l 

� d p ︸ ︷︷ ︸ 
‘side’ terms 

+ 

∫ p t l 

p t r 

� d p + 

∫ p b r 

p b l 

� d p . (22) 

sing Eq. (19) , the integrated pressure force acting on the left- and

ight-hand edges of the control volume can be calculated. The vari-

tion of geopotential along the left-hand edge of a control-volume

n the k -th fluid layer can be expressed as 

i,k (ξ ) = �p 

(
a 1 ξ + 

1 

2 

a 2 ξ
2 + · · · + 

1 

n 

a n ξ
n 
)

+ �i,k + 1 2 
, (23) 

here �i,k +1 / 2 is the value of the geopotential at the base of the

ayer. In the bottom-most layer this value is simply the bottom

oundary condition. As per Section 4.1 , the corresponding poly-

omial coefficients a l can be computed by sampling the equation-

f-state ρ−1 (T i,k (ξl ) , S i,k (ξl ) , p i,k (ξl )) at the integration points dis-

ributed over the control-volume thickness. Noting that these left-
nd right-hand integrals are coincident with the centres of the i -th

nd i + 1 -th fluid columns, the associated thermodynamic variables

an be computed in a strictly per-column basis – there is no need

or horizontal interpolation. As discussed previously, these values

re obtained by evaluating a set of local piecewise polynomial re-

onstructions T i, k ( ξ ), S i, k ( ξ ), obtained via a local PLM, PPM or PQM

nterpolant, at the integration points ξ l . The fluid pressure is com-

uted at the integration points via linear interpolation. 

Given the variation in �i, k ( p ) along each edge, the contribution

o the pressure gradient force can be computed by performing a

econd integration for the associated contact pressure 
 p 

i,k + 1 
2 

p 
i,k − 1 

2 

� d p = (�p) 2 
(

1 

2 
a 1 + 

1 

6 
a 2 + · · · + 

1 

n (n + 1) 
a n 

)
+ �p �i,k + 1 2 

, 

(24) 

here the integration has been evaluated over the full layer thick-

ess ξ ∈ [0, 1]. An evaluation of the pressure gradient force con-

ribution on the right-hand side of the control-volume �i +1 / 2 ,k can

e obtained by repeating this procedure for the edge aligned with

he (i + 1) -th column. 

.3. Evaluation of integral terms on the upper & lower segments 

The contributions to the pressure gradient force from the upper

nd lower edges of the control-volume �i +1 / 2 ,k can be computed

y integrating the varying geopotential height along the sloping

ayer interfaces 
 

∂�
� d p = 

∫ p t r 

p b r 

� d p + 

∫ p b l 

p t l 

� d p + 

∫ p t l 

p t r 

� d p + 

∫ p b r 

p b l 

� d p ︸ ︷︷ ︸ 
‘layer’ terms 

. 

(25) 

ontrary to the evaluation of the side integral terms, these cal-

ulations are somewhat more involved. Firstly, recalling the argu-

ents presented in Section 4.1 , the pressure gradient force contri-

utions can be computed by numerical quadrature. This approach

equires the geopotential height to be sampled at a series of in-

egration points distributed along the upper and lower control-

olume edges 

 p 
i +1 ,k + 1 

2 

p 
i +0 ,k + 1 

2 

� d p � �p 

n ∑ 

l=1 

w l �(x l , p l ) . (26) 

ere �p is the horizontal pressure difference along the control-

olume edge, the w l ’s are a set of linear weights associated with

 particular choice of quadrature rule, and the points ( x l , p l ) are

he set of integration points distributed along the sloping control-

olume edge. Noting that values for the geopotential are already

vailable at the left- and right-hand edges of �i +1 / 2 ,k , due to cal-

ulations already performed for the side integral terms, a Lobatto-

ype quadrature rule ( Abramowitz and Stegun, 1964 ) is employed

n this study, reducing the number of intermediate integration

oints required to be computed. 

The values of geopotential height are calculated at the inte-

ration points distributed over the interior of the control-volume

hrough additional hydrostatic integration. Specifically, a variant of

q. (23) is used to evaluate the geopotential profiles in the control-

olume interior, through integration of the hydrostatic relation 

l,k (ξ ) = �p(x l ) 
(

a 1 (x l ) ξ + 

1 

2 
a 2 (x l ) ξ

2 + · · · + 

1 

n 
a n (x l ) ξ

n 
)

+ �l,k − 1 
2 

. 

(27) 

ote that Eq. (23) and (27) are equivalent, except that, in the lat-

er, an explicit horizontal dependence for both the layer thickness

p ( x l ) and polynomial coefficients a i ( x l ) is accounted for. Evalu-

tion of the pressure thickness �p ( x l ) is unambiguous, with the
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Fig. 2. Details of the pressure gradient force calculation for the layer-wise scheme. 

The distribution of geopotential within the staggered control-volume �i +1 / 2 ,k is 

computed using numerical integration techniques. The final contact pressure acting 

on �i +1 / 2 ,k is calculated by a subsequent integration of the geopotential distribution 

along the four edge-segments of the control-volume. 
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t  
pressure exactly represented by a bilinear distribution within each

control volume �i +1 / 2 ,k . Evaluation of the polynomial coefficients

associated with the thermodynamic quantities, though, incorpo-

rates an additional level of approximation, with a corresponding

horizontal interpolation of thermodynamic quantities required. In

this study, these internal values T ( x l , p l ), S ( x l , p l ) are obtained via

a linear interpolation of the associated column-wise reconstruc-

tions from the edges of �i +1 / 2 ,k . Note that such a scheme supports

high-orders of accuracy in the vertical, but is limited to linear rep-

resentations in the horizontal. More specifically, this ‘horizontal’

interpolation is actually carried out in a ‘layer-wise’ orientation,

and departs from the true horizontal direction when the slope of

the layer is non-negligible. This issue will be discussed in detail

in subsequent sections. The construction of higher-order accurate

horizontal interpolation schemes is a possible avenue for future

work. 

A somewhat subtle issue relates to the direction of vertical inte-

gration for the intermediate profiles �l, k ( p ). It is tempting to con-

sider an approach in which all geopotential profiles are integrated

together, including those for the control-volume edges, starting

from the base of the column and working upwards toward the

fluid surface. The difficulty with this approach hinges on the for-

mulation of the bottom boundary condition for the intermediate

values �l,n z (p = p b ) . Considering the non-linear character of the

hydrostatic relationship ( Eq. (6) ), it should be noted that it is not

consistent for both the bottom pressure and geopotential boundary

conditions to vary linearly over the lowest control-volume edge. In

fact the correct relationship can only be determined through a con-

sistent integration of the hydrostatic relationship downwards from

the fluid surface. 

As such, an alternative multi-stage procedure is employed in

this study, in which the set of column-wise geopotential profiles

�i, k ( p ) are first obtained, integrating from the base of each col-

umn upwards to the fluid surface. Secondly, a consistent, horizon-

tal geopotential distribution is constructed at the fluid surface for

the intermediate profiles �l, 1 (p = p s ) , by linear interpolation from

the adjacent column surface heights. Finally, the intermediate pro-

files �l, k ( p ) are computed by integration from the fluid surface

downwards towards the bottom boundary. Such a formulation en-

sures that intermediate profiles of geopotential are computed in

a hydrostatically consistent fashion for all horizontal integration

points. This two-stage integration process is illustrated in Fig. 2 . 

4.4. Summary of layer-wise pressure gradient formulation 

The procedure to evaluate the horizontal pressure gradient

force using the layer-wise finite-volume formulation can be sum-

marised in the following steps: 

1. Compute the set of piecewise polynomial reconstructions in the

vertical direction for the thermodynamic variables. Specifically,

a set of piecewise polynomial interpolants T i, k ( p ), S i, k ( p ) are

computed for each column in the model. 

2. Integrate for the column-centred geopotential values �i, k ( p )

and compute the pressure force contributions for the control-

volume sides. Integration proceeds layer-by-layer from the base

of each column, with Eq. (23) used to obtain values for the

geopotential at the layer interfaces. Eq. (24) is used to compute

the associated contributions to the pressure gradient force. 

3. Construct a surface boundary condition for the intermediate

geopotential profiles �k, 1 (p = p s ) for all control-volumes. In

this study, such values are obtained by linear interpolation from

the column surface heights. 

4. Integrate for the intermediate geopotential values �l, k ( p ) and

compute the pressure force contributions for the control-

volume upper and lower edges. Integration proceeds layer-by-
layer from the top of each column, with Eq. (27) used to obtain

values for the geopotential at the interior integration points on

layer interfaces. A linear horizontal interpolation for the ther-

modynamic quantities is performed in this step. Eq. (26) is used

to compute the associated contributions to the pressure gradi-

ent force. 

. Method II: A rectilinear finite-volume formulation 

While the layer-wise pressure gradient formulation presented

reviously achieves high-order accuracy in the vertical direction, it

s limited by the low-order ‘horizontal’ interpolation scheme used

o evaluate terms on the sloping upper and lower control-volume

dges. As will be shown in subsequent sections, this effect can lead

o issues when the imposed stratification profiles are non-linear

nd the fluid layers themselves are steeply sloping. As such, an al-

ernative formulation is considered. This second scheme is based

n the observation that hydrostatic consistency is easiest to main-

ain when computations are restricted to non-staggered points in

he horizontal direction. Specifically, when all hydrostatic integra-

ion is carried out at the centre of mass columns, there is no need

o perform horizontal interpolation operations, with centred layer-

hickness and thermodynamic variables immediately available. The

ectilinear finite-volume scheme presented in this section seeks to

chieve such a discretisation through the selection of an appropri-

te staggered control-volume geometry. 

.1. An overlapping axis-aligned control-volume 

In contrast to the sloping quadrilateral control-volumes used in

oth the semi-analytic formulation of Adcroft et al. (2008) and

he layer-wise methodology presented in Section 4 , an alterna-

ive axis-aligned control-volume configuration �i +1 / 2 ,k is proposed

ere. Such a geometry is designed to be free of sloping upper

nd/or lower edge segments, and, as a result, requires an evalu-

tion of the contact pressure acting on the left- and right-hand

dges only. As such, an approximation to the pressure gradient

erm acting over the rectilinear control-volume �i +1 / 2 ,k leads to
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Fig. 3. Overlapping axis-aligned control-volumes �i +1 / 2 ,k associated with the rectilinear pressure gradient formulation. The control-volumes �i +1 / 2 ,k are axis-aligned rect- 

angles, formed by taking the mean of the layer interface positions of adjacent mass grid-cells. Note that the control-volumes induced by such a strategy may necessarily 

overlap adjacent fluid layers. In the vicinity of the bottom and surface boundaries, the geometry of the control-volumes �i +1 / 2 ,k may be modified to ensure they lie within 

the fluid interior. 
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he following integral expressions 

GF = 

1 

�x i + 1 2 ,k 

1 

�p i + 1 2 ,k 

∮ 
∂�

� d p (28) 

 

∂�
� d p = 

∫ p t 

p b 

� d p + 

∫ p b 

p t 

� d p , (29) 

here the contour integral has been split into the two non-

rivial segments corresponding to the left- and right-hand edges

f the two-dimensional rectangular control-volume �i +1 / 2 ,k asso-

iated with a horizontal velocity variable, as illustrated in Fig. 3 .

onsistent with the layer-wise formulation presented in Section 4 ,

he control-volume �i +1 / 2 ,k employs a C-type grid-staggering,

ith �i +1 / 2 ,k sandwiched between a set of thermodynamic and

ayer-thickness quantities associated with the i -th and (i + 1) -th

olumns. 

In contrast to previous approaches, the control-volume �i +1 / 2 ,k 

s not constrained to lie within a single layer of fluid in the vertical

irection, but instead intersects with an overlapping set of layers

n the adjacent i -th and (i + 1) -th columns, depending on the par-

icular configuration of relative layer-thicknesses. In some sense,

his overlapping finite-volume scheme is related to the class of

ruly-horizontal pressure gradient formulations recently employed

n the atmospheric modelling community ( Zängl, 2012 ), where a

onsistent horizontal pressure gradient is computed by interpolat-

ng quantities onto a common height and taking finite-differences.

he present scheme can be thought of as a generalised integral

orm of such approaches, where the pressure gradient force is ap-

roximated as the truly-horizontal difference between integrated

ontact pressures acting over a finite control-volume. 

The vertical extent of the control-volume �i +1 / 2 ,k is determined

n a three-step process. Firstly, the mean left- and right-hand

ressure-heights are computed, taken as a simple average between

he associated layer interfaces in the i -th and (i + 1) -th columns 

p̄ i − 1 
2 ,k 

= 

1 

2 

(
p i,k − 1 

2 
+ p i,k + 1 2 

)
, p̄ i + 1 2 ,k 

= 

1 

2 

(
p i +1 ,k − 1 

2 
+ p i +1 ,k + 1 2 

)
.

(30) 

hese midpoints define the initial upper and lower surfaces p t , p b 
or the control-volume �

i + 1 
2 

,k 
, such that 

p ∗t = min 

(
p̄ i − 1 

2 ,k 
, p̄ i + 1 2 ,k 

)
, p ∗b = max 

(
p̄ i − 1 

2 ,k 
, p̄ i + 1 2 ,k 

)
. (31) 
h  
 minimum thickness constraint is imposed, ensuring that weakly-

loping layers are inflated to a mean adjacent thickness value 

p ∗∗
t = min 

(
p ∗t , 

1 

2 

(
p ∗t + p ∗b 

)
− d̄ 

2 

)
, 

p ∗∗
b = max 

(
p ∗b , 

1 

2 

(
p ∗t + p ∗b 

)
+ 

d̄ 

2 

)
, (32) 

here d̄ = 

1 

2 

( �p i + �p i +1 ) . (33) 

inally, these values are limited by the vertical extents of the ad-

acent fluid columns, ensuring that the control-volumes �
i + 1 

2 
,k 

do

ot protrude either above the fluid surface, or below the bottom

oundary 

p t = max (p ∗∗
t , p i, 1 2 

, p i +1 , 1 2 
) , p b = min (p ∗∗

b , p i,n z + 1 2 
, p i +1 ,n z + 1 2 

) .

(34) 

ote that such choices are carefully selected to ensure that the

ontrol-volumes �
i + 1 

2 
,k 

always maintain positive thickness, and 

hat they at least partially overlap with the associated k -th layer

ass-cells in their adjacent columns, unless an intersection with

he fluid surface or bottom bathymetry is encountered. Fig. 4 . 

.2. Evaluation of overlapping integral terms 

Recalling the methodology presented in Section 4.1 , the recti-

inear pressure gradient force is evaluated as a two-step procedure,

rstly seeking to compute the column-wise distributions of geopo-

ential height �i, k ( p ) through integration of the hydrostatic ex-

ression ( Eq. (6) ), before evaluating the contact pressure integrals

efined in Eq. (29) . Starting from Eq. (18) and using a suitable nu-

erical integration rule, the variation in geopotential height within

he k -th layer of the i -th column is given by 

i,k (ξ ) = �p i,k 

(
a 1 ξ + 

1 

2 

a 2 ξ
2 + · · · + 

1 

n 

a n ξ
n 
)

+ �i,k + 1 2 
, (35) 

here �
i,k + 1 

2 
is the value of the geopotential at the base of the

ayer and the a l ’s are the coefficients of the polynomial approxima-

ion to ρ−1 , calculated by sampling the fluid specific-volume over

 set of integration points distributed over the layer thickness, as

iscussed in Section 4 . 

Given the variation in �i, k ( p ) within each column, an evalua-

ion of the contact pressure forces acting along the left- and right-

and edges of the control-volumes �
i + 1 ,k can be made. Recalling
2 
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that �
i + 1 

2 
,k 

can overlap multiple fluid layers, depending on the rel-

ative distribution of layer-thicknesses, the total contact pressure

force acting along a given edge is computed as a summation over

this set of intersecting layers 

∫ p 
i + 1 

2 
,k + 1 

2 

p 
i + 1 

2 
,k − 1 

2 

� d p = 

| Q| ∑ 

q =1 

�p i + 1 2 ,k 

∫ ξt 

ξb 

� d p , (36)

where the set of overlapping layers Q includes any layer q

that intersects with the control-volume �
i + 1 

2 
,k 

such that p 
i,q + 1 

2 
≥

p 
i + 1 

2 
,k − 1 

2 
and p 

i,q − 1 
2 

≤ p 
i + 1 

2 
,k + 1 

2 
. Here, the upper and lower sur-

faces of the control-volume �
i + 1 

2 
,k 

are those pressure levels deter-

mined using Eq. (34) , such that p 
i + 1 

2 
,k − 1 

2 
= p t and p 

i + 1 
2 

,k + 1 
2 

= p b .

The quantities ξ t and ξ b are the values of the local vertical coor-

dinate at the endpoints of each intersecting interval. Based on the

relative layer overlap, an appropriate set of bounds ξ t and ξ b are

computed for each layer q in the overlapping set | Q |. Making use

of the polynomial form of �i, k given in Eq. (35) , the integrals in

Eq. (36) can be evaluated as follows 

�p i + 1 2 ,k 

∫ ξt 

ξb 

� d p = (�p i,k ) 
2 

×
(

1 

2 

a 1 ξ
2 + 

1 

6 

a 2 ξ
3 + · · · + 

1 

n (n + 1) 
a n ξ

n +2 

∣∣∣ξt 

ξb 

+ �p i,k �i,k + 1 2 
. 

(37)

As per Eq. (36) , the total pressure force acting over the left- and

right-hand edges of a control-volume �
i + 1 

2 
,k 

is found through a

summation of the various integral contributions expressed by Eq.

(37) . 

5.3. Summary of rectilinear pressure gradient formulation 

The numerical procedure to evaluate the pressure gradient force

using the rectilinear finite-volume formulation can be summarised

in the following steps: 
Fig. 4. Detailed representation of the rectilinear pressure gradient force scheme. Geopot

column in the model. Further integration of these profiles along the left- and right-hand 

acting on �i +1 / 2 ,k . Note that evaluation of the side-integral terms may involve an integra

by the control-volume �i +1 / 2 ,k . 
1. Compute the set of piece-wise polynomial reconstructions in

the vertical direction for the thermodynamic variables. Specif-

ically, a set of piecewise polynomial interpolants T i, k ( p ), S i, k ( p )

are computed for each column in the model. 

2. Integrate the hydrostatic relationship for the geopotential pro-

files �i, k ( p ) associated with each column in the model using

Eq. (35) . Integration proceeds layer-by-layer from the base of

each column, upwards towards the fluid surface. 

3. Evaluate the pressure gradient term for each staggered control-

volume �i +1 / 2 ,k . This is a multi-step process in which: (i) the

axis-aligned control-volume �i +1 / 2 ,k is formed using Eqs. (30) –

(34) , (ii) the set of intersecting layers Q i +1 / 2 ,k is computed, by

searching for layers in the adjacent columns that overlap with

�i +1 / 2 ,k , and (iii) the contact pressure force acting over the left-

and right-hand edges of �i +1 / 2 ,k is evaluated using Eq. (36) and

(37) . The subsequent pressure gradient term is taken as the dif-

ference in integrated contact pressure over �i +1 / 2 ,k , as per Eq.

(28) . 

Compared to the layer-wise formulation presented previously,

ote that the rectilinear scheme is composed entirely of column-

entred operations, and does not require horizontal interpolation

perations or the computation of geopotential profiles at staggered

orizontal points. 

. Experimental results 

The performance of the layer-wise and rectilinear finite-volume

ormulations for evaluation of the horizontal pressure gradient

orce were assessed using a seres of two-dimensional flow configu-

ations. Specifically, a set of ocean-at-rest test-cases were analysed,

eeking to measure the accuracy and consistency of the numeri-

al schemes when subject to increasingly difficult combinations of

hermodynamic stratification and layer-wise slope. Specifically, the

ows focus on the evolution of a stratified fluid, initialised in equi-

ibrium over a region of rough topography. To provide a stringent

est of the numerical formulations, the problem was discretised us-

ng a pure terrain-following coordinate – generating a set of layers

f non-uniform thickness, steeply inclined to the horizontal. The
ential profiles are first computed using numerical integration techniques for each 

edges of the staggered control-volume �i +1 / 2 ,k gives the full contact pressure force 

tion spanning multiple fluid layers – incorporating the set of grid-cells overlapped 
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Fig. 5. Anomalous horizontal velocity magnitude after 90 days of integration using the layer-wise pressure gradient formulation and linear temperature and salinity initial 

conditions. In the upper panel a 1 × 3 integration rule is employed, with a 3 × 5 rule used in the lower panel. Reduced velocity magnitude shows that error approaches 

zero when a suitably high-order accurate numerical integration procedure is adopted. 

Fig. 6. Anomalous horizontal velocity magnitude after 90 days of integration using the rectilinear pressure gradient formulation and linear temperature and salinity initial 

conditions. Consistent with the layer-wise results, use of high-order accurate, 5-point integration rule preserves hydrostatic consistency to machine precision. 

f  

2  

n

 

a  

b  

t  

s  

d  
ully non-linear TEOS-10 equation-of-state ( McDougall and Barker,

011 ) was employed in all test cases, as an example of a complex

on-linear density function. 

Noting that the flow is initialised in equilibrium, the accuracy

nd consistency of the various pressure gradient formulations can
e assessed by measuring the magnitude of drift in the flow over

ime. This effect is quantified by tracking the development of both

purious horizontal velocity components and anomalous thermo-

ynamic variations throughout the integration. Schemes that pre-
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Fig. 7. Anomalous horizontal velocity magnitude and temperature anomaly after 90 days of integration using the layerwise pressure gradient formulation and quadratic 

temperature initial conditions. Spurious velocity currents and thermal drift patterns are clearly evident. 
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serve exact hydrostatic consistency are capable of maintaining an

unperturbed flow state over time. 

6.1. Initial conditions 

A careful initialisation procedure is required to ensure that

a correctly equilibrated flow-state is computed with respect to

the various non-linearities present in the problem specification.

Specifically, interactions between the imposed stratification pro-

files, layer-wise geometries and equation-of-state definitions are

required to be addressed with a high degree of accuracy. Consider-

ing a consistent vertical integration of the hydrostatic relationship

within each column 

∂ z (p) = −gρ( T (p) , S(p) , p ) , (38)

it is necessary to ensure that: (i) the bottom pressure bound-

ary condition is computed in a sufficiently accurate manner, and

(ii) the numerical temperature and salinity degrees-of-freedom are

computed for each layer as a consistent integral mean. In this

study, Eq. (38) was integrated using a high-order accurate Runge-

Kutta type method ( Shampine and Reichelt, 1997 ) over a high-

resolution vertical grid. Exact analytic representations of the im-

posed temperature T 0 ( p ) and salinity S 0 ( p ) profiles were adopted,

allowing an integration of Eq. (38) without additional interpolation

considerations. Such a procedure ensures that the discrete bot-

tom pressure boundary condition can be computed to within nu-

merical precision. Additionally, careful initialisation of the grid-cell
egrees-of-freedom was employed through use of a high-order ac-

urate numerical integration rule to compute the layer mean quan-

ities 

 ̄i,k = 

1 

�p i,k 

∫ p t 

p b 

T (p) d p, S̄ i,k = 

1 

�p i,k 

∫ p t 

p b 

S(p) d p . (39)

gain, using the analytic profiles T 0 ( p ) and S 0 ( p ), such quantities

an be computed to within numerical precision by adopting a suit-

bly accurate quadrature rule. Note that such an approach can dif-

er significantly from a simple ‘midpoint’ type approximation to

he layer mean values. 

.2. Model setup & geometry 

A simple two-dimensional box-model was used for the integra-

ion of all flows. The horizontal dimension of the box was set to

0 0 0 km, and was discretised into 60 uniformly-spaced grid-cells.

he vertical axis of the model was configured according to a ‘pure’

igma-type coordinate, with a stack of 16 terrain-following layers

sed in all columns. No warping of coordinate surfaces was incor-

orated, with the layers within a given column comprising equal

hicknesses. The bottom bathymetry was selected to model an en-

ironment containing steeply-sloping segments. 

The box-model is based on a semi-implicit Arbirary Lagrangian-

ulerian (ALE) type formulation, with the external surface-mode

esolved via an implicit operator ( Marshall et al., 1997 ), and ver-

ical advection achieved via a conservative remapping operation

 Bleck, 2002; White et al., 2009 ). Horizontal and vertical advection



D. Engwirda et al. / Ocean Modelling 116 (2017) 1–15 11 

Fig. 8. Anomalous horizontal velocity magnitude and temperature anomaly after 90 days of integration using the rectilinear pressure gradient formulation and quadratic 

temperature initial conditions. The flow is preserved in an essentially error-free fashion. 
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s accomplished via a high-order accurate essentially monotonic

PM/PQM formulation ( Engwirda and Kelley, 2016 ). The model

ime-step was set to �t = 1200 seconds, with vertical advection

ctivated once every 12 hours. All flows were integrated over a

0 day period. No vertical or horizontal mixing schemes were im-

lemented, with explicit dissipation limited to a small horizontal

nd vertical momentum diffusion operator and frictional bottom

oundary condition. 

.3. Linear stratification 

In the first test problem, the fluid was equilibrated using a set

f linear temperature and salinity initial conditions 

 0 (p) = T s −
(

�T 

�p 

)
p, S 0 (p) = S s + 

(
�S 

�p 

)
p , (40) 

here �p = 2 × 10 7 Pa , T s = 20 ◦C , �T = 20 ◦C , S s = 10 g / kg and

S = 25 g / kg . Such profiles give temperatures and salinities of T =
0 ◦C , S = 10 g / kg at the fluid surface, and T = 0 ◦C , S = 35 g / kg at

he lowest point on the bottom boundary. 

Firstly, the convergence of both the layer-wise and rectilinear

ormulations was assessed, by varying the order of the numeri-

al integration rules used to compute the pressure gradient force.

n Fig. 5 , the horizontal velocity field after 90 days of integration

sing the layer-wise formulation is shown. In the top panel, re-

ults using a ‘low-order’ pressure gradient scheme are illustrated,

n which a so-called 1 × 3 integration rule is used, employing
ne integration point in the vertical and three in the horizontal.

n analysis of the velocity field shows a relatively small spuri-

us horizontal flow, with a maximum magnitude of approximately

 × 10 −6 m / s . In the bottom panel, results using a ‘higher-order’

ressure gradient scheme are shown, in which a 3 × 5 integra-

ion rule is used, employing three integration points in the vertical

nd five in the horizontal. The associated spurious velocity field

hows a maximum error of less than 1 × 10 −11 m / s in this case,

emonstrating that the layer-wise pressure gradient formulation

 when based on sufficiently high-order accurate numerical inte-

ration rules | leads to an essentially error-free discretisation for

his test-case, with hydrostatic equilibrium maintained to machine

recision. A similar experiment was conducted for the rectilinear

ormulation, leading to comparable conclusions. Specifically, it was

ound that use of a sufficiently high-order accurate, 5-point inte-

ration rule led to essentially error-free behaviour, with maximum

purious velocity currents of less than 1 × 10 −11 m / s reported after

0 days of integration. See Fig. 6 for additional details and con-

ours. 

The ability to represent ocean states incorporating linear strat-

fication profiles and arbitrary non-linear equation-of-state defi-

itions represents an improvement on the original semi-analytic

cheme of Adcroft et al. (2008) which was limited to piecewise

onstant thermodynamic profiles and a simplified fluid density

unction ( Wright, 1997 ). Though an imposed linear stratification

rofile may initially seem innocuous, it should be noted that sig-

ificant non-linearities, due to both thermodynamic and pressure-
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Fig. 9. Anomalous horizontal velocity magnitude and temperature anomaly after 90 days of integration using the layerwise pressure gradient formulation and exponential 

temperature initial conditions. Spurious velocity currents and thermal drift patterns are clearly evident. 
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compressibility effects, are encountered even in this simple case

when the complexities of a fully non-linear equation-of-state are

considered ( McDougall and Barker, 2011 ). 

6.4. Quadratic stratification 

In the second test problem, the influence of non-linear ther-

modynamic stratification was assessed, with the fluid equilibrated

using a set of quadratic temperature and linear salinity initial

conditions 

T 0 (p) = T s −
(

�T 

�p 

)
p −

(
�T ′ 
�p 

)2 

p 2 , S 0 (p) = S s + 

(
�S 

�p 

)
p , 

(41)

where, in addition to those constants defined previously in Eq.

(40) , �T ′ = 

√ 

10 and T s = 30 ◦C . Note that the imposed temper-

ature and salinity profiles T 0 ( p ) and S 0 ( p ) can be exactly recon-

structed using the high-order PPM/PQM interpolants employed in

this study. 

Following the results of the linear-profile test-case, both the

layer-wise and rectilinear pressure gradient formulations were run

using the high-order accurate 3 × 5 and 5-point integration rules,

respectively. In Figs. 7 and 8 , contours of the horizontal velocity

field and anomalous temperature distribution are shown after 90

days of integration. Focusing firstly on Fig. 7 , it can be seen that

the layer-wise formulation fails to maintain exact consistency in

this case, with a small spurious velocity component seen to drive

an anomalous thermal drift. Specifically, spurious currents on the
rder 1 × 10 −4 m / s are generated, resulting in temperature drifts

f approximately 3 × 10 −2 ◦C . Errors are seen to be clustered adja-

ent to layers of significant slope. The absolute magnitude of these

rrors was not observed to grow with time. 

The genesis of these errors appears to be tied to a single oper-

tion embedded within the layer-wise formulation, specifically, the

orizontal interpolation of temperature and salinity profiles to in-

egration points interior to the control-volumes �i +1 / 2 ,k . Such cal-

ulations are necessary when computing intermediate profiles of

eopotential �l, k , and, subsequently, the contact pressure forces

cting along the sloping upper and lower edges of the grid-cell. For

ontrol-volumes of significant geometrical slope, the difference be-

ween the imposed quadratic temperature profile and a layer-wise

inear approximation can become non-negligible, leading to an er-

oneous approximation of the pressure forces acting on the sloping

nterfaces. It is emblematic of the sensitivity of the pressure gradi-

nt term itself that such small discrepancies can lead to relative

arge errors. 

In Fig. 8 , results for the rectilinear formulation are presented,

nd show much improved performance. Specifically, it is seen that

ssentially error-free behaviour is achieved, with maximum veloc-

ty magnitudes of less than 1 × 10 −11 m / s , reported, inducing neg-

igible thermal drifts of approximately 2 × 10 −10 ◦C . These results

onfirm that, due to the absence of layer-wise interpolation oper-

tions, the rectilinear formulation is able to maintain near-perfect

ydrostatic consistency in the presence of non-linear stratification

rofiles, steeply-sloping layer geometries and a complex non-linear

quation-of-state definition. Note that in addition to a highly accu-
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Fig. 10. Anomalous horizontal velocity magnitude and temperature anomaly after 90 days of integration using the rectilinear pressure gradient formulation and exponential 

temperature initial conditions. Spurious velocity currents and thermal drift patterns are clearly evident. 
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ate integration of the contact pressure integrals, such behaviour

elies on an exact vertical reconstruction of column-wise tempera-

ure and salinity profiles. This is achieved in the case of polyno-

ial stratification profiles by making use of high-order accurate

PM/PQM type interpolation schemes. 

.5. Exponential stratification 

In the third test problem, the influence of inexact vertical re-

onstruction was examined, with the fluid equilibrated using a set

f exponential temperature and linear salinity initial conditions 

 0 (p) = T s e 
−
(

p−α
β

)
, S 0 (p) = S s + 

(
�S 

�p 

)
p , (42) 

here, in addition to those constants defined previously in Eq.

40) , α = 1 × 10 5 Pa and β = 5 × 10 6 Pa . Note that, in contrast to

he previous test-cases, the imposed temperature profile T 0 ( p ) can-

ot be exactly reconstructed using the polynomial-type PPM/PQM

nterpolants employed in this study. 

Consistent with previous test-cases, the layer-wise and rectilin-

ar pressure gradient formulations were run using the 3 × 5 and

-point integration rules, respectively. In Figs. 9 and 10 , contours

f the horizontal velocity field and anomalous temperature distri-

ution are shown after 90 days of integration. In this case, both

ressure gradient formulations are seen to exhibit some level of

purious movement, though the errors associated with the layer-

ise method are almost two orders of magnitude larger than those
ssociated with the rectilinear scheme. Specifically, the layer-wise

ethod induces spurious currents on the order of 4 × 10 −4 m / s ,

eading to a maximum thermal drift of approximately 0.15 °C. For

he rectilinear formulation, a maximum spurious velocity compo-

ent of 6 × 10 −6 m / s is reported, associated with a thermal drift of

pproximately 8 × 10 −4 ◦C . In both cases, it was observed that the

bsolute magnitude of these errors did not grow with time. 

The source of the pressure gradient errors in this test-case are

wo-fold. Firstly, consistent with observations made in the pre-

ious test problem, errors in the layer-wise formulation can be

ttributed primarily to the action of the horizontal interpolation

cheme used to evaluate temperature and salinity at interior in-

egration points. This assumption is reinforced by noting that the

agnitude of the spurious velocity components in both the ‘expo-

ential’ and ‘quadratic’ test-cases are of the same order when the

ayer-wise scheme is used. Furthermore, errors are seen to be clus-

ered in areas of significant layer slope. 

Additionally, there also exist a set of lower-order errors due to

n inexact vertical reconstruction of the imposed exponential tem-

erature profiles. An analysis of Fig. 10 , shows that errors asso-

iated with the rectilinear scheme are concentrated near the sur-

ace layers, primarily adjacent to grid-cells of larger thickness. Not-

ng, firstly, that the gradient of the imposed exponential profile

s largest at the surface, and secondly, that lower accuracy one-

ided polynomial approximations are employed by the PPM/PQM

nterpolation schemes in grid-cells adjacent to boundaries, it is ar-

ued that such errors are a by-product of the vertical interpolation
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f  
scheme. It was found that by switching from the 3rd-order accu-

rate PPM interpolant (results shown in Fig. 10 ) to the 5th-order

accurate PQM scheme (results not shown), the magnitude of the

spurious horizontal velocity was reduced by more than an order of

magnitude. Such results highlight the benefits of employing suffi-

ciently high-order accurate reconstruction techniques. 

7. Discussion & conclusions 

A pair of finite-volume formulations for evaluation of the hor-

izontal pressure gradient force in layered ocean models have

been presented. Through the use of high-order accurate numerical

quadrature and polynomial reconstruction techniques, both meth-

ods have been designed to maintain hydrostatic and thermobaric

equilibrium in the presence of strongly-sloping layer-wise geome-

tries, non-linear equation-of-state descriptions and non-uniform

vertical stratification profiles. The use of high-order accurate nu-

merical integration procedures can be seen as a generalisation of

previous finite-volume type approaches ( Adcroft et al., 2008 ). The

two formulations differ primarily in their choice of staggered mo-

mentum control-volumes, with the layer-wise method based on

a conforming, piecewise linear interpolation of adjacent column-

wise pressure-levels, while the rectilinear method employs an

axis-aligned geometry that may overlap multiple adjacent fluid

layers. 

The performance of the new schemes was assessed using a

set of two-dimensional benchmark problems, designed to mea-

sure the dynamical ‘drift’ away from a non-linear equilibrium state

over time. Overall, both methods were shown to perform well

| able to achieve exact consistency in the presence of steeply-

sloping terrain-following layers, a complex, non-linear equation-

of-state definition, and linear vertical stratification profiles. In the

presence of more complex thermodynamic configurations, the rec-

tilinear method was shown to outperform the layer-wise formu-

lation. Specifically, it was found that the horizontal interpolation

operator embedded within the layer-wise formulation can lead to

erroneous pressure gradient force evaluations when the imposed

stratification profiles are non-linear and the layers steeply-sloped.

While the construction of higher-order accurate interpolation pro-

cedures seems an obvious improvement, the development of such

techniques is not necessarily trivial, due to the difference in orien-

tation between the curvilinear layers and true horizontal axis. 

The performance of the rectilinear formulation appears to be

promising, with this method leading to either exact, or highly ac-

curate pressure gradient force evaluations for the test-cases anal-

ysed. One unresolved issue with this scheme relates to questions of

energy conservation. Additional work is needed to establish what

effect the overlapping control-volume configuration has on the en-

ergetics of the system. Further study is also required to assess the

behaviour of both schemes in a fully dynamic context, and in cou-

pled, fully three-dimensional global ocean environments. We are

currently extending our two-dimensional implementation to the

general three-dimensional case, and aim to assess the performance

of these new schemes for three-dimensional seamount-type test

problems, as per Mellor et al. (1998) . Improvements to the com-

putational cost of the schemes is another area for future improve-

ment, with the horizontal pressure gradient evaluations currently

requiring approximately 2–3 times the effort of the thickness ad-

vection operator. This cost includes the time for both the high-

order accurate thermodynamic reconstructions and the repeated

sampling of the fluid equation-of-state over the element integra-

tion points. The development of methods to reduce these costs is

currently under investigation. 
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ppendix A. Numerical Integration Coefficients 

A set of high-order accurate numerical integration rules for

valuation of the hydrostatic and contact pressure integrals can be

erived using standard numerical quadrature techniques. Specifi-

ally, noting that integrals involving both the geopotential 

i,k (p) − �i,k + 1 2 

= 

∫ p 

p 
i,k + 1 

2 

ρ−1 d p � �p 

∫ ξ

0 

a 1 + a 2 ξ + · · · + a n ξ
n −1 d ξ

� �p 

(
a 1 ξ + 

1 

2 

a 2 ξ
2 + · · · + 

1 

n 

a n ξ
n 
)

, (A.1)

nd contact pressure force 

 p 
i,k + 1 

2 

p 
i,k − 1 

2 

� d p = (�p) 2 
(

1 

2 
a 1 + 

1 

6 
a 2 + · · · + 

1 

n (n + 1) 
a n 

)
+ �p �i,k + 1 2 

, 

(A.2)

an be evaluated to arbitrarily high orders of accuracy by finding

 suitable polynomial expansion, the task is to compute the ex-

ansion coefficients a 1 , a 2 , . . . , a n for a given equation-of-state def-

nition and thermodynamic profile. This curve fitting procedure

an be accomplished by sampling the integrand (the fluid specific-

olume 1/ ρ) at a set of quadrature-points distributed over the in-

egration segment. Adopting a standard n -term polynomial expan-

ion f ( ξ ) 

f (ξ ) = b ̂  a T , where b = 

[
1 , ξ , ξ 2 , . . . , ξ n −1 

]
and 

ˆ a = [ a 1 , a 2 , a 3 , . . . , a n ] , (A.3)

he coefficients ˆ a can be evaluated by solving the system of linear

quations defined by the interpolation problem 

 

 

 

 

 

 

 

1 , ξ1 , . . . , ξ
n −1 
1 

1 , ξ2 , . . . , ξ
n −1 
2 

. . 

. 

1 , ξn , . . . , ξ n −1 
n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 1 

a 2 

. . 

. 

a n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ρ−1 

(
T (ξ1 ) , S(ξ1 ) , p(ξ1 ) 

)
ρ−1 

(
T (ξ2 ) , S(ξ2 ) , p(ξ2 ) 

)
. 
. 
. 

ρ−1 

(
T (ξn ) , S(ξn ) , p(ξn ) 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (A.4)

uch that ˆ a = R 

−1 v , where R 

−1 is the matrix of quadrature coef-

cients, pre-computed for each integration rule as the inverse of

he matrix operator in Eq (A.4) , and v is the vector of specific-

olume evaluations, calculated once for each segment to be inte-

rated. Note that computation of v requires an evaluation of the

uantities T ( ξ l ) and S ( ξ l ) at the sampling points ξ l . In this work,

uch terms are evaluated using an essentially-monotonic variant of

he 3rd- and 5th-order accurate PPM/PQM interpolants ( Engwirda

nd Kelley, 2016 ). 

Optimal sets of sampling points ξ1 , ξ2 , . . . , ξn can be obtained

rom standard quadrature techniques. For example, 4-point Gauss-
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egendre and Lobatto type integration rules can be obtained via 

4 
G = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 
2 

− 1 
2 

√ 

1 
7 
α1 

1 
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− 1 
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1 
7 
α2 

1 
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+ 
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1 
7 
α2 

1 
2 
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1 
2 

√ 

1 
7 
α1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

and ξ 4 
L = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
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1 
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− 1 
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1 
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1 
2 
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1 
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1 
2 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

here 

α1 = 3 + 2 

√ 

6 
5 
, 

α2 = 3 − 2 

√ 

6 
5 

. 

(A.5) 

ere ξ 4 
G 

and ξ 4 
L 

have been mapped onto the unit segment ξ ∈ [0,

]. See, for instance, Golub and Welsch (1969) and Abramowitz and

tegun (1964) for details of additional integration rules. 

It is important to note that by computing the full matrix of

olynomial expansion coefficients explicitly in this work ( Eq. (A.4) ),

fficient schemes for the evaluation of the nested geopotential and

ontact pressure integrals can be formulated using only a single set

f equation-of-state evaluations per segment, even in the case of

artial or overlapping segments as per the rectilinear formulation.

he techniques presented here are otherwise equivalent to stan-

ard numerical quadrature rules. 
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