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ABSTRACT

The equilibrium of a modeled wind- and buoyancy-driven, baroclinically unstable, flow is analyzed using
the transformed Eulerian-mean (TEM) approach described in Part I. Within the near-adiabatic interior of
the flow, Ertel potential vorticity is homogenized along mean isopycnals—a finding readily explained using
TEM theory, given the geometry of the domain. The equilibrium, zonal-mean buoyancy structure at the
surface is determined entirely by a balance between imposed surface fluxes and residual mean and eddy
buoyancy transport within a “surface diabatic layer.” Balance between these same processes and the wind
stress determines the stratification, and hence potential vorticity, immediately below this layer. Ertel po-
tential vorticity homogenization below then determines the mean buoyancy structure everywhere. Accord-
ingly, the equilibrium structure of this flow can be described—and quantitatively reproduced—from knowl-
edge of the eddy mixing rates within the surface diabatic zone and the depth of this zone, together with
potential vorticity homogenization beneath. These results emphasize the need to include near-surface
buoyancy transport, as well as interior PV transport, in eddy parameterization schemes. They also imply
that, in more realistic models, the surface buoyancy balances may be impacted by processes in remote
locations that allow diapycnal flow.

1. Introduction

In Part I (Plumb and Ferrari 2005) a nongeostrophic
transformed Eulerian-mean (TEM) theory was pre-
sented for analysis of eddy transport on a zonal-mean
flow. Here, we revisit a problem explored by Karsten et
al. (2002, hereinafter KJM), considering the modeled
equilibrium state of fluid in a cylindrical tank, forced at
its top surface by applied stresses and buoyancy fluxes,
in order to illustrate and to explore further the impli-
cations of that theory. The model set up is briefly de-
scribed in section 2. The flow becomes baroclinically
unstable and eventually equilibrates to produce a strati-
fied mean state, as shown by KJM and in Fig. 1a, de-
scribed below. This equilibrium state is described in
terms of conventional eddy transports in section 3;
aside from the buoyancy structure, other features of
interest are the homogenization of mean Ertel potential
vorticity (PV) along the mean isopycnals, and the eddy
fluxes of buoyancy and of PV, both of which are “skew”
(directed along the mean contours of buoyancy and PV,
respectively) except near the surface, where they are

significantly downgradient within an important region
we refer to as the “surface diabatic layer” (SDL), which
is analogous to the “surface layer” discussed by
Treguier et al. (1997), Held and Schneider (1999), and
Koh and Plumb (2004) in isopycnal or isentropic coor-
dinate formalisms.

The equilibrium state is then reanalyzed in section 4
from a TEM perspective. As expected theoretically, the
residual circulation and residual fluxes of buoyancy and
of PV are very weak within the adiabatic interior: es-
sentially all the dynamics of the problem are contained
within the SDL. The residual circulation is weak—
which makes this flow a special case of the range of
possibilities discussed by Marshall and Radko (2003) in
the context of the Antarctic Circumpolar Current—be-
cause adiabatic conditions in the interior preclude re-
sidual flow across the isopycnals and the tank geometry
precludes residual mean flow along them. (The Eule-
rian-mean circulation, by contrast, does not vanish but
is dominated by the wind-driven circulation.) The rea-
sons for interior PV homogenization become clear in
the TEM perspective as a result of the absence of a
residual circulation: as found by Marshall and Radko
(2003), PV must then be homogenized in the interior if
the eddies transport PV downgradient, since there is no
residual mean flux to balance and eddy flux. In section
4b, we use these results to reconstruct the mean buoy-
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ancy structure: the only inputs required to do so (apart
from the externally imposed stress and buoyancy flux)
are the transfer coefficient for buoyancy within the
SDL, and the effective depth (a quantity to be defined)
of the SDL. The only eddy closure required in the in-
terior is the knowledge that mean PV is homogenized
along mean isopycnals.

2. Model details

The flow we consider is the same as the “reference
experiment” of KJM; the geometry and imposed pa-
rameters of the numerical simulation are based on the
laboratory experiment of Marshall et al. (2002). The
schematic Fig. 2 of KJM shows the essential features:
the fluid is contained within a cylindrical tank, with a
rigid lid at z � 0, a flat-bottom boundary at z � �H �

�0.15 m, with no-slip boundary conditions there and at
the side walls at r � R � 0.6 m. The system is forced at
the surface with a wind stress and a prescribed surface
buoyancy flux, which are shown in Fig. 3 of KJM. The
numerical model used is the “MITgcm” (Marshall et al.
1997a,b); included in the model are small-scale diffu-
sion of momentum and buoyancy, and convective ad-
justment. There is no imposed mixed layer. The key
parameters are given in KJM.

The model was integrated from a state of rest and
uniform buoyancy. Initially, only the surface wind stress
was applied. A steady Ekman flow developed, at which
point the surface buoyancy forcing was switched on,
producing a baroclinically unstable stratification. Even-
tually, the imposed forcing, in collusion with baroclinic
eddies, sets up a statistically steady state. All results
presented here are taken after this time; the run was

FIG. 1. Cross section of key quantities in the model equilibrium state. (a) Mean buoyancy b (m s�2; contours) and
eddy buoyancy flux u�b� (arrows; the largest arrow corresponds to a flux 3.45 � 10�6m2 s�3, and fluxes with magni-
tude less than 5% of this are not plotted). (b) Mean Ertel PV P (contours; s�3) and eddy PV flux u�P� (arrows;
longest arrow corresponds to a flux 1.17 � 10�5m s�4, and fluxes with magnitude less than 5% of this are not
plotted). (c) Volume streamfunction r� of the meridional circulation u � (�, w). Note that u � �� � j� �
�r�1j � �(r�) where j is the azimuthal unit vector, so the flow is along the streamlines of r�, as shown. The arrows
show the sense of the circulation. Contour interval is 2.5 � 10�7 m3 s�1.
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integrated for 2150 rotational periods, and results were
averaged in time over the final 240 periods.

3. The equilibrium state

The azimuthal mean equations for this system are

mt � u · �m � �� · F	m
 � X,

f mz � �rbr,

1
r

�ru�r � wz � 0, and

bt � u · �b � �� · F	b
 � Bz. �1�

These equations are identical to those of Part I, except
for the change to cylindrical coordinates (r, 
, z), so that
the overbar represents azimuthal average, m � 1

2
fr2 �

r� represents the angular momentum per unit mass, X
is the mean torque per unit mass, and B is the mean
diabatic buoyancy flux, representing convection and
small-scale diffusion, assumed to be purely vertical (the
small-scale horizontal diffusion in the model makes an
insignificant contribution to the mean budget). Both
the mean meridional velocity u � (u, w) and eddy fluxes
F{c} � u�c� are here treated as vectors in the r–z plane.

a. Structure of the equilibrium state

The equilibrium state of the model, and the eddy
fluxes maintaining it, are shown in Fig. 1. The equilib-
rium distribution of zonal mean buoyancy b is shown in
Fig. 1a, along with the vector eddy buoyancy flux u�b�.
The stratification is confined essentially to the upper
half of the domain, and the eddy flux also to the upper
half, and to the central part of the channel where the
wind stress and baroclinicity are greatest. One of the
most striking aspects is the extent to which the buoy-
ancy fluxes are directed along the b contours, rather
than downgradient (i.e., the flux is “skew”), in the fluid
interior: this is a well-known consequence of the adia-
batic nature of the eddies there (e.g., Plumb 1979;
Treguier et al. 1997). This is not the case, however,
within a few model layers of the surface, where there is
a substantial downgradient component to the eddy
fluxes. (The same is also true in the bottom layers but
is not evident in the figure because the buoyancy fluxes
are so weak there.) This surface diabatic layer (herein-
after SDL) is the only region where the eddies effect
substantial transport across isopycnals; we shall discuss
this important region and its consequences in some de-
tail below.

The distributions of mean Ertel potential vorticity
P � �a·�b (PV) and the eddy PV flux u�P� are shown in
Fig. 1b. Like the buoyancy flux, the PV flux is skew in
the adiabatic interior, but not within the SDL, where it
is predominantly directed downgradient, away from the
PV maximum just below the surface in the outer part of
the domain. A second striking aspect of the equilibrium
state is the similarity of the shapes of the mean buoy-

ancy and PV contours: P is almost homogenized along
b surfaces everywhere in the adiabatic interior, though
not near the surface. Given the similarity of b and P
contours, note that Fig. 1b implies within the adiabatic
interior a substantial eddy PV flux along the mean
isopycnals.

Last, we complete the description of the equilibrium
state by showing in Fig. 1c the mean meridional stream-
function �, defined such that the meridional mean
flow is

u � �u, w� � �� � � j�� � �r�1j � ��r��, �2�

where j is the unit vector in the azimuthal direction.
The circulation is straightforward, with almost verti-
cally uniform vertical mean flow supplied by Ekman
pumping from the top and bottom model layers.

b. Eddy fluxes of buoyancy and PV

It is worth dwelling briefly on the form of the eddy
fluxes shown in Fig. 1. As already noted, the eddy buoy-
ancy flux is directed along the mean buoyancy contours
within the interior. As is well known, this is to be ex-
pected, since

u�b� · �b � �b�
�B�

�z
� � �

�t
� u · ���1

2
b�2�

�� ·
1
2

u�b�2. �3�

In a statistically steady state, then we expect the com-
ponent of flux across the mean isopycnals to vanish if
the eddies are locally adiabatic, and if mean meridional
advection of buoyancy variance and the triple correla-
tion term are both negligible (e.g., Plumb 1979;
Treguier et al. 1997). While there is no guarantee that
these terms are indeed small in our case of fully equili-
brated baroclinic eddies, the empirical result that
u�b� · �b � 0 in the interior is in accord with other
experience (e.g., Plumb and Mahlman 1987) with zonal
averages.1

The nonlinearities are clearly not negligible within
the SDL, however. The term in (3) involving �B/�z dif-
fers significantly from zero only within the top model
layer, where the surface fluxes are imposed; neverthe-
less, we have already remarked that the downgradient
component of the buoyancy flux is manifestly nonzero
in a few layers below the top, which must imply that the
remaining terms in (3) are playing a role. In the absence
of a mixed layer (as is the case in our simulation), the
SDL corresponds to the surface zone discussed by Held
and Schneider (1999) and Koh and Plumb (2004), as the
region spanned by those (three dimensional) isopycnals

1 McDougall and McIntosh (1996) have shown how this argu-
ment can be refined in the nonzonally averaged case where there
may be large mean advection of buoyancy variance.
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that are ventilated at some azimuth (or time). When
averaging in isopycnal coordinates, diabatic effects—
through the surface buoyancy flux—enter the averages
directly, throughout this region. In our z-coordinate
case (unlike the isopycnally averaged problem), the
diabatic buoyancy flux enters the average in (3) only in
the topmost model layer where �B/�z is nonzero:2 in-
formation that the isopycnals outcrop at some azimuth
is carried into the average only through the remaining
terms in (3). In the absence of a mixed layer, the maxi-
mum thickness � of the ventilated layer—and thus our
estimate of the thickness of the surface zone—is

� � �b � bz
�1�b�2�1�2, �4�

where �b�2 is the eddy buoyancy perturbation at the
surface and bz the mean gradient within the SDL. We
shall in fact introduce a somewhat different measure of
the depth of the SDL in section 4b(3).

Much the same could be said for the PV fluxes as for
the buoyancy fluxes: they obey an equation analogous
to (3) and therefore are expected to be, and in practice
are, directed along the P (and b) contours in the adia-
batic, inviscid interior where PV is conserved, but not
within the SDL. The fact that the eddy PV flux along
the mean isopycnals is nonzero in the interior, while the
mean gradient of PV along the mean isopycnals is es-
sentially zero, is significant, since it shows that any at-
tempt to represent this component of the flux in the
form

��P�|b � �K �P |b �5�

is doomed to fail, since it would predict no flux.3 As
discussed at length in Part I, this does not mean that the
approach itself is doomed, but that the expression on
the left of (5) is not the only, nor in fact the most
appropriate, definition of eddy flux. (It is clearly not the
same thing, for example, as the isopycnal component of
the isopycnal-mean flux.)

c. Momentum, buoyancy, and PV balances:
Conventional analysis

Diagnostically, the key balances in the equilibrated
state of the modeled flow are simple to describe. Given
that (i) the direct contribution of diffusion to the angu-
lar momentum budget is negligible outside the Ekman
layers, so X � r�z, where � is the zonal stress on a
horizontal surface (so X � 0 in the interior); (ii) that the
term u · �m is dominated by the Coriolis term ruf ; and
(iii) that the eddy angular momentum fluxes play a very
minor role, the steady angular momentum budget is,
from the first of (1),

1
r

u · �m � f u � �z. �6�

Hence the radial component of the mean circulation
must vanish outside the Ekman layers, as is evident
from Fig. 1c. [The slight deviation of the streamlines
just below the surface in the outer part of the channel is
because of a small contribution there of the Reynold’s
stress term, �r�1(ru�m�)r.] Equation (6) integrates, us-
ing (2) and given � � 0 at the surface, to

� � �
�s

f
, �7�

where �s is the surface wind stress. Given that the eddy
fluxes of angular momentum are largely negligible, the
overall angular momentum balance is as depicted sche-
matically in the upper frame of Fig. 2: angular momen-
tum is input at the surface by the wind stress, carried
directly downward by the meridional circulation, and
extracted by the stress at the bottom boundary.

In the adiabatic interior, the steady buoyancy budget
is simply a balance between mean advection and the
eddy flux divergence. Given that the radial mean ve-
locity u is essentially zero in the interior and that, for
small Rossby number as is appropriate to our example,
the eddy flux divergence is dominated by the horizontal
term, this balance is

wbz � �
1
r

�ru�b��r . �8�

This balance—first discussed by Gill et al. (1974)—was
at the heart of the discussions in Johnson and Bryden
(1989), KJM, and Marshall et al. (2002) on the role of
eddies in setting ocean stratification. If w is controlled
by the wind stress, the interior stratification of the equi-
librium state exists only by virtue of the eddy transport.
Within the SDL, the balance is more complex, with the
mean circulation, eddy transport, and surface buoyancy
fluxes all playing a role, as depicted in the lower frame
of Fig. 2.

4. The equilibrium: TEM analysis

The TEM equations for this system are

mt � u† · �m � �� · F†	m
 � X,

f mz � �rbr ,

1
r

�ru†�r � wz
† � 0, and

bt � u† · �b � �� · F†	b
 � Bz. �9�

As discussed in Part I,

u† � u � � � j	 �10�

(where j is the azimuthal unit vector) is the residual
mean circulation and

2 In the inner part of the cylinder where the surface buoyancy is
low, convection also plays a role below the topmost layer.

3 Of course, the mean PV gradient along mean isopycnals is not
exactly zero, but it is weak and of inconsistent sign.
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F†	c
 � F	c
 � 	 j � �c �11�

is the residual eddy flux of c. Following Part I, we adopt
the coordinate-independent definition

	 � �|�b |�1�s · u�b�, �12�

where s � j � �b/|�b | is the outward unit vector along
the mean isopycnals, for the quasi-Stokes streamfunc-
tion. Note that (9)–(12) are the equations used by Mar-
shall and Radko (2003) in their residual mean model of
the ACC, except that they used the Held and Schneider
(1999) definition of �, rather than (12).

The theoretical impact of using different definitions
of � is discussed at some length in Part I, in which it is
argued that the form (12) has a number of advantages.
One of these is that, in the presence of a mixed layer, s
becomes normal to a horizontal upper surface and con-
sequently � and the normal component of u† vanish
there, thus guaranteeing (unlike the quasigeostrophic
definition � � �u�b�/bz) no residual mean flow through
the boundary. In the present case, where there is no
mixed layer, we simply impose at the top of the model

one of vanishing thickness, and with horizontal veloci-
ties and buoyancy equal to the values immediately be-
low this layer. Thus, in the following discussion, the
upper surface is taken to be immediately above this thin
added mixed layer.

a. Residual circulation and fluxes

The equilibrium state of the model, viewed from the
transformed Eulerian-mean perspective, is depicted in
Fig. 3. The residual circulation (lowest frame) has al-
most vanished in the interior: in the residual picture,
the circulation is essentially confined to the surface dia-
batic layers near the top (and, to a lesser extent, bot-
tom) boundary. The overturning circulation, as mea-
sured by the maximum value of streamfunction in the
interior, is reduced by a factor of more than 90% com-
pared with the Eulerian circulation, reflecting the high
degree of cancellation between the Eulerian-mean and
quasi-Stokes velocities. (The cancellation is more com-
plete than in KJM, a result of our different way of
calculating the residual velocity.) The residual fluxes of
buoyancy and of PV are shown in the two upper frames.

FIG. 2. A schematic depiction of the conventional momentum and buoyancy budgets. See
text for discussion.
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As anticipated, the dominant skew components of the
fluxes within the adiabatic interior have been removed
by the transformation, leaving significant fluxes of
buoyancy and PV only within the SDL, where the
fluxes of both are predominantly downgradient.

While the vanishing of the skew component of the
residual eddy flux of buoyancy is guaranteed by the
definition of the quasi-Stokes streamfunction (12), the
fact that the same is true of the residual eddy PV flux
(as evident in Fig. 3b) indicates that the effective ad-
vecting velocity that produces the skew fluxes is the
same for both quantities. In terms the discussion in
section 7 of Part I, this amounts to asserting that the
ratio


 � �s · u�b�

|�b| ��1 sP · u�P�

|�P|
, �13�

where sP is the unit vector along the PV contours, be
equal to unity, in which case the skew fluxes of buoy-
ancy and of PV are in the same proportion as their
mean gradients. Except in the surface layer, and near
the sides and bottom of the domain where the fluxes
are small and the ratio is ill defined, � is within 10% of
unity. As is evident from (18) of Part I, the skew com-
ponent of the residual eddy PV flux, sP · F†{P}, vanishes
if � � 1.

We also show, in Fig. 4, the residual eddy angular
momentum flux F†{m}. The flux is dominated by the
vertical component �fr�, though with significant con-
tribution from the horizontal Reynolds’ stress ru���
near the surface. As we shall see in section 4b(1), the
vertical independence of the flux in the interior is a
consequence of the fact that the role of F†{m} is to
communicate the surface wind stress down to the bot-
tom of the fluid. The role of the Reynolds stresses in

FIG. 3. Cross section of key quantities in the TEM analysis of the model equilibrium state. (a) Mean buoyancy
b (m s�2; contours) and residual eddy buoyancy flux F†{b} (gridpoint-centered arrows; the scale is the same as in
Fig. 1a). Note that the normal component of this flux vanishes at the surface: those arrows that appear to penetrate
the surface refer to the first layer below the surface. (b) Mean Ertel PV P (contours; s�3) and residual eddy PV
flux F†{P} (arrows; same scale as Fig. 1b). (c) Volume residual streamfunction r�† of the meridional circulation. The
contour interval is 2.5 � 10�7 m3 s�1. The arrow in (c) shows the sense of the residual circulation.
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this case is to direct the net stress slightly toward the
center of the tank (so that the stress on the bottom
reflects the wind stress at slightly larger radius).

Overall, the TEM budgets are depicted schematically
in Fig. 5. To a good approximation, the TEM angular
momentum balance is, as just stated and as described by
Johnson and Bryden (1989), simply a matter of the ed-
dies transferring the imposed wind stress downward.
This contrasts with the conventional-mean view, shown
in Fig. 2, of momentum transfer by the Ekman-driven
meridional circulation. The TEM buoyancy budget is
similarly straightforward: transport is negligible in the
adiabatic interior, and so all the fluxes required to
transport buoyancy from the region (at large r) of sur-
face buoyancy input to the region of loss at small r
occur within the SDL. Both the residual eddy fluxes
and advection by the residual circulation, recirculating
within the SDL, play a role in this transport.

b. Analysis of the TEM balances

1) INTERIOR BUOYANCY BUDGET

If diabatic processes are negligible in the interior,
then F†{b} � 0 (Treguier et al. 1997), and so the TEM
buoyancy budget becomes, in adiabatic steady state,

u† · �b � 0 �14�

in the interior: the residual flow must be confined to
buoyancy surfaces. In fact, mass continuity then re-
quires that the volume flux between two adjacent mean

isopycnals be spatially uniform—that is, s · u†|�b |�1 is
constant along mean isopycnals, where s · u† is the com-
ponent of the residual velocity along the mean isopyc-
nals. However, since all isopycnals (except a few near
the surface maximum) are laterally bounded, outcrop-
ping into the SDL only at the inner end and not enter-
ing the bottom layer (Fig. 1a), it follows that u† � 0 and
hence

�† � 0 �15�

throughout the interior, consistent with Fig. 3c. Hence,
from (7) and (10), with (12),

�	 �
u�b� · s

|�b |
�

�s

f
�16�

there, expressing the balance between wind-driven
steepening of the isopycnals and the flattening by eddy
fluxes (cf. KJM), a statement almost identical to (8). It
is this balance that shows up in the vertical coherence of
the residual eddy angular momentum flux in Fig. 4,
since F†(z){m} � �fr� � r�s.

2) INTERIOR MOMENTUM BALANCE

Neglecting small-scale friction in the interior and us-
ing F†{b} � 0 there, the steady transformed angular
momentum budget for Ro � 1 is, from the first of (9)
and from (26) of Part I,

f |�b | u† � s · F†	P
, �17�

where sP · F†{P} is the component of the residual eddy
flux of Ertel PV along the mean isopycnals. In general,

FIG. 4. The residual angular momentum flux F†{m}. Just as in Fig. 3a, the vertical component
vanishes at the surface; those vectors appearing to penetrate the surface refer to locations just
below the surface.
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(17) expresses a balance between residual mean and
eddy fluxes of PV. As we have just seen from (15), the
residual mean advection vanishes in this case and it
then follows that

s · F†	P
 � 0 �18�

in the interior, since there is nothing in the equilibrated
state to balance eddy PV transport. The empirical fact
that s · �P � 0 in the interior, together with (18), is
evidence that, in the presence of eddy stirring, one way
(perhaps the only way) of achieving zero flux is to
eliminate the mean gradient. To put the same thing
another way, in the absence of residual mean advection
or any other process that might restore a mean gradi-
ent, the eddies stir any preexisting gradient into
oblivion.

3) SDL BUOYANCY BUDGET

Near the surface layer, there is a nonzero residual
mean flow, recirculating within the SDL, and a nonzero
residual eddy buoyancy flux. Since vertical diffusion
dominates over small-scale horizontal diffusion near
the surface, we may write the mean buoyancy budget
there as

�b

�t
� u† · �b � �� · F†	b
 � Bz.

At the bottom of the surface layer, the eddies are adia-
batic and so F†{b} � 0 and �† � 0 there. At the top of
the layer (which is the top of the thin, introduced mixed
layer), the normal component of F†{b} at the surface is
also zero, as is �†. If we integrate from any point zi

within the adiabatic interior, the integrated steady bal-
ance is

�
z

i

z
S

� · ��†j � �b� dz � �
z

i

z
S

� · F†	b
 dz � �BS,

where BS is the surface value (defined positive up-
ward). There is no contribution to the integrals from
within the interior. Applying the conditions at top and
bottom of the surface layer, we have

1
r

�

�r�r�
z

i

z
S

�F†�r�	b
 � �†bz� dz�� �BS. �19�

The surface buoyancy structure is thus simply deter-
mined by a balance between the net horizontal buoy-
ancy transport within the surface diabatic layer, and
surface buoyancy fluxes. No other effects come into

FIG. 5. Schematic of the transformed budgets of (top) angular momentum and (bottom)
buoyancy. See text for discussion.
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play because both the residual circulation and the re-
sidual buoyancy flux vanish below the surface layer,
and so there is no transport of buoyancy into or out of
the base of the layer. This fact makes (19) subtly dif-
ferent from the balance discussed by Marshall (1997);
the residual circulation, which here simply recirculates
within the SDL, plays a role in the surface heat budget
only by virtue of the nonvanishing of bz within the
SDL.4 Therefore, the contribution of residual mean ad-
vection to the integrated SDL buoyancy (19) is smaller
than a straightforward scaling analysis [such as that of
Treguier et al. (1997)] might suggest, and while the
mean component is not negligible, the residual eddy
flux is in this case the dominant term in the surface
layer buoyancy budget.

Now, �† vanishes at the surface and below the SDL;
assuming that the SDL is thin, with little variation of
eddy buoyancy flux in the vertical direction, the typical
magnitude of the term |�†�b/�z | � |u�b�s |, the surface
eddy buoyancy flux. Since F †(r){b} has a magnitude
|u�b�s | at zs and vanishes in the interior, the entire in-
tegrand in (19) has the same typical magnitude. Ac-
cordingly, we may define a characteristic effective
depth, �S, of the SDL according to

�
z

i

z
S

�F†�r�	b
 � �† bz� dz � �Su�b�S. �20�

(Note that the integral is insensitive of the value of zi,
as long as it lies below the SDL, since the integrand
vanishes in the interior.) The depth �S, thus defined,
and �b given by (4) are plotted in Fig. 6. The SDL, by
definition (20), is quite shallow: shallower, in fact, than
the estimate from (4) by a factor of 2–3, and clearly

shallower than the depth over which the diabatic buoy-
ancy fluxes are significant, as is evident on the figure.
From the definition (20) we get, not a direct estimate of
the actual depth of the SDL, but a more useful measure
of its effective depth: buoyancy is transported horizon-
tally within the SDL as if it were a layer of depth �S

within which the total buoyancy flux is given by the
surface value of u�b�. In fact, from (20) and (19), the
SDL buoyancy budget becomes simply

1
r

�

�r
�r�S u�b�S� � �BS. �21�

If we further assume that the isopycnal slope is shal-
low below the surface diabatic layer, and that the layer
is so thin that buoyancy fluxes vary little across it5 then,
using (16),

u�b�S � u�b�B � �bz�B

�s

f
, �22�

where the subscript B denotes the value at the base of
the SDL. Making this substitution in (20) and (19), we
achieve an expression for the stratification at the base
of the SDL:

�bz�B � �
f

�s�S
�

0

r

rBS dr, �23�

where we have assumed bz � 0 at r � 0, where con-
vection sets the stratification. No formal closure as-
sumption has been made to this point. Note that (23)
expresses the eddy-determined stratification at the base
of the surface layer in terms of the surface buoyancy
input and wind stress, and does not include any explicit

4 This would still be true in the presence of a mixed layer, since
then the SDL would then be deeper than the mean mixed layer.

5 The buoyancy flux actually decreases by about 20% from top
to bottom of the SDL.

FIG. 6. The thickesses � and �S of the SDL (the thin, short-dash curve shows z � ��; the
heavy, long-dashed curve shows z � ��S), superimposed on the mean buoyancy (contours,
m s�2) and residual buoyancy flux F†{b}. Note that only the upper part of the domain is shown.
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eddy flux terms (though it does involve the thickness �S,
which will be sensitive to eddy amplitude). The eddy
buoyancy fluxes do not appear, simply because they
must balance both the wind-driven advection (16) and
the surface buoyancy input (21) and have thus been
eliminated.

c. Reconstruction of the equilibrium state

To go further, we need to make a closure assumption
for the surface buoyancy fluxes. Since there is no ver-
tical motion there, there is no skew flux: transport is
locally two-dimensional, and it is reasonable to expect a
flux–gradient parameterization of the form

u�b�S � �K
�bS

�r
�24�

to be useful. The actual relationship between the sur-
face flux and mean gradient of buoyancy is shown in
Fig. 7. The linearity of this relationship through most of
the domain is remarkable and implies a constant value
of K � 4.8 � 10�5 m2 s�1. This is convenient, if a little
surprising [there is no reason why K in (24) should not
be a function of r]. The linearity breaks down in the
outer part of the domain where �bS/�r changes sign.
Given (24), (21) becomes simply

1
r

�

�r �rK�S

�bS

�r � � BS, �25�

from which the surface distribution of mean buoyancy
can be determined, given BS, K, and �S.

Using (24) and the assumption of a thin SDL, we
have from (22),

u�b�B � u�b�S � �K
�bS

�r
� � K��b

�r�B
�

1
f

�S��b

�z�B
,

so that, at the base of the layer, the isopycnal slope is
just


B � ���b��r

�b��z�B
� �

�S

fK
, �26�

and the stratification is

��b

�z�B
� �

fK

�S

�bS

�r
, �27�

from which we can determine the PV there. Marshall
and Radko (2003) followed the same approach in their
analysis of the Antarctic Circumpolar Current, though
with more generality (they also investigated cases with
nonzero residual mean circulation), and they param-
eterized K in terms of the mean isopycnal slope, which
we make no attempt to do in this diagnostic study.

We could now construct the full solution, using (25)
to determine bS(r), and (26) to determine the isopycnal
slope at the base of the surface diabatic layer. To do so,
we require the externally imposed surface buoyancy
flux BS and the wind stress (both of which of course we
know), together with the surface diffusivity K and the
surface diabatic layer thickness �S. In fact, the only
other input needed to complete the mean buoyancy
field everywhere is the knowledge that PV is homog-
enized along mean isopycnals in the interior, since for

FIG. 7. The surface buoyancy flux u�b�s vs the surface mean buoyancy gradient br . Each
point is a grid point along the surface: those points with negative mean gradient are in the
outer part of the domain (cf. Fig. 3a). The superimposed line has slope �4.8 � 10�5 m2 s�1.
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P � f bz (a good approximation here) this implies that
the isopycnal slope is independent of z throughout the
interior. There is no need to parameterize either buoy-
ancy fluxes or PV fluxes in the interior.

Results of this reconstruction, using the constant val-
ues K � 4.8 � 10�5 m2 s�1 and �S � 0.05H � 0.0075 m,
are shown in Fig. 8. The shapes of the modeled and
reconstructed isopycnals match very well, except near
the buoyancy maximum in the outer part of the upper
layers, where the surface flux–gradient relationship,
with the chosen value of K, is not accurate. The slight
mismatch in isopycnal slopes just below the surface
stems from the neglect of variations in eddy buoyancy
flux across the surface diabatic layer that was used to
derive (22). The other significant discrepancy is an off-
set of the absolute values. Our reconstruction implicitly
set the zero point as the deep water buoyancy and
assumed that this is the same as the lowest buoyancy at
the surface (at r � 0). In reality, we expect that con-
vection will set the deep water buoyancy to be that of
the lowest value at the surface including the eddy con-
tribution, and therefore the mean surface buoyancy at
r � 0 will be greater than that at depth by an amount
corresponding to the local eddy buoyancy perturbation.
While this value could be added to the input informa-
tion for the reconstruction, we would need a theory for
the stratification between the (few) mean isopycnals

that do not outcrop in order to complete the equilib-
rium solution.

5. Conclusions

From a theoretical point of view, one key result of
this paper, following the theoretical treatment of Part I,
is the illustration in practice of the crucial distinction
between “residual” eddy fluxes, and the “raw” fluxes.
For example the PV flux u�P� (in these z coordinates)
does not vanish even when, as we found here, the mean
PV gradient along the mean isopycnals vanishes, be-
cause of a presence of a large “skew” component. In
contrast, the residual eddy PV flux does vanish under
these circumstances. Among other things, this confirms
the conclusion of Part I that, in any parameterization
scheme that is centered on the eddy flux of (Ertel) PV,
it is the residual eddy flux that is consistent with a flux–
gradient formalism.

In the cylinder flow analyzed here, the transformed
Eulerian-mean analysis allowed a simple exposition of
the controlling factors in setting the equilibrium state.
In the adiabatic interior, the residual circulation van-
ishes: the adiabaticity guarantees that there can be no
residual flow across the mean isopycnals, and the block-
ing effects of the sidewalls prevent any flow along them.

FIG. 8. Mean buoyancy contours (dashed) and reconstructed (solid) by the method outlined in section 4c.
Contours values are multiples of 0.002 m s�2. See text for details.
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In turn, the transformed angular momentum balance
makes it clear why PV must be homogenized: since
there is no mean residual advection, there is nothing to
oppose eddy stirring in the interior, with the conse-
quence that PV is homogenized along the isopycnals, a
scenario similar to that discussed by Rhines and Young
(1982). Thus, as suggested by Treguier et al. (1997), the
equilibrium state is not sensitive to the eddy mixing rate
in the interior, not because the mixing is weak but, on
the contrary, because it is so dominant that PV is ho-
mogenized, independent of the mixing rate.

Another consequence of the vanishing of the interior
residual circulation and the consequent confinement of
the residual circulation to the SDL is that there is no
buoyancy advection into or out of the SDL, so that the
surface buoyancy structure is simply a balance between
fluxes through the surface and buoyancy transport
(through the diabatic eddy fluxes and, to a lesser de-
gree, internal residual advection) within the SDL. It is
therefore these SDL fluxes that allow an equilibrium
with nonzero buoyancy fluxes through the surface even
though there is no residual mean advection into or out
of the SDL. The scenario described here is a special
case—the vanishing residual mean circulation being a
consequence of the restrictive geometry—of the range
discussed by Marshall and Radko (2003), with some
minor modifications in the SDL buoyancy budget to
allow for the residual circulation within the SDL.

It is worth noting here the potential for remote im-
pact on the surface buoyancy budget that this chain of
factors implies. The fact that, in this example, the re-
sidual circulation must recirculate within the SDL has
nothing to do with the dynamics of the SDL itself, but
arises because there are no diabatic effects elsewhere
that could permit a return flow across the mean iso-
pycnals. If, on the other hand, the outer walls permitted
a nonzero residual flow (e.g., because of vertical mixing
immediately outside the walls, or coupling to a remote
ocean with significant diapycnal transport), then there
appears to be nothing to preclude a residual flow of the
kind discussed by Marshall and Radko (2003), with a
residual circulation along the mean isopycnals in the
adiabatic interior, recirculating through the SDL. The
presence of such a circulation would change many
things: PV would no longer be homogenized along
isopycnals, since there would now be a mean residual
advection of PV in addition to eddy stirring, and the
surface buoyancy budget would be affected by residual
mean advection into and out of the SDL. Thus, remote
diabatic effects, here subsumed as the boundary condi-
tion at the outer wall, could impact the local budgets
both at the surface and in the interior.

The recognition of the SDL/adiabatic interior struc-
ture of the flow allowed a straightforward analysis of
the equilibrated buoyancy structure. The only inputs
required for the reconstruction of the mean state were
the SDL buoyancy budget (for which it was necessary
to specify the horizontal diffusivity within the SDL and

its depth, together with the imposed flux through the
surface, yielding the surface buoyancy distribution), the
vanishing of residual circulation within the adiabatic
interior (which led to balance between the wind stress
and the buoyancy flux, yielding the isopycnal slope im-
mediately below the SDL), and the homogenization of
PV in the interior (allowing the mean isopycnals to be
constructed throughout the interior). In fact, the most
important result—the slope of the isopycnals, which
leads to the thermocline depth, obtained here as (26)—
is identical to that derived by KJM. However, the as-
sumptions required here are less restrictive than those
used by KJM. In particular, it was not necessary to take
the logically inconsistent step of using a downgradient
flux–gradient relationship to represent the skew fluxes
of buoyancy in the interior. It was necessary to intro-
duce here the concept of PV homogenization, but in a
less restrictive way than in KJM, who imposed an ex-
ponential vertical structure of mean buoyancy (which is
in fact equivalent to assuming P to be a linear function
of b). Note that we made no use here of the SDL an-
gular momentum budget, which allows determination
of the structure of the residual circulation (which is
confined to the SDL), since this result was not of pri-
mary interest.

Of course, the simplicity of this analysis is a conse-
quence of the simplicity of the system under consider-
ation. The most obvious factor is the two-dimension-
ality of the mean state, which by itself precludes direct
application of the results to much of the ocean. Even in
the case of the ACC, the situation may be more com-
plicated: if interior or remote diabatic effects permit a
nonzero residual circulation then, as already noted,
mean PV may no longer be homogenized along mean
isopycnals since there is then a requirement, even in the
adiabatic interior, for a nonzero residual eddy PV flux
to balance mean advection. In that case, the PV struc-
ture in the interior would be sensitive to eddy mixing
rates within the interior.
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