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ABSTRACT

A strategy for diagnosing and interpreting flow regimes that is firmly rooted in dynamical theory is presented
and applied to the study of observed and modeled planetary-scale regimes of the wintertime circulation in the
Northern Hemisphere. The method assumes a nonlinear dynamical model of the atmospheric motion, and
determines a subspace of the phase space of the model in which multiple quasi-stationary solutions of the
equations of motion are likely to be located. The axes that generate this subspace are the vectors that possess
the smallest amplitude of the time derivative computed from a linearized version of the model, using the time-
mean state of the system as a basic state. These vectors are called here “neutral vectors,” and are shown to be
eigenvectors of a self-adjoint operator derived from the linearized modet.

As a prototype of a dynamical system with quadratic nonlinearity relevant to atmosphenc dynamm the
three-variable convection model that generates the well-known Lorenz attractor is first investigated. It is shown
that the presence of two unstable stationary solutions, which determine the shape of the attractor, generates a
strong bimodality in the projection of the state vector of the system onto the most neutral vector, once a proper
time filter is used on the data.

To apply this method to the analysis of atmospheric low-frequency variability, a three-level quasigeostrophic
model in spherical geometry is adopted as the dynamical model. Neutral vectors are computed using the observed
mean atmospheric state in winter as a basic state; alternative basic states, in which the eddies in the time-mean
state are partially or fully removed, are also used in sensitivity experiments. The spatial patterns of the leading
neutral vectors are relative insensitive to variations in some model parameters, but are strongly controlled by
the form of the basic state; such dependence can be understood in terms of linear planetary-wave theory. The
neutral vectors of the wintertime climatology are then used to analyse a 32-winter sample of observed atmospheric
fields. It is found that the time series of the projection of these fields onto one particular neutral vector has a
significantly bimodal probability density function, suggesting the existence of (at least) two separate flow regimes
associated with anomalies of opposite sign. The two regimes are hemispheric in extent, and are close to some
of the clusters found in previous studies that made use of empirical orthogonal functions.

Finally, it is shown that, if an appropriate forcing function is employed, the quasigeostrophic model is able
to generate a very realistic climatology in a long nonlinear integration and, furthermore, two regimes similar
to the observed ones. Again, these regimes can be identified by the presence of bimodality in the probability
density function of the projections of model fields onto neutral vectors. Modeled and observed regimes have
not only similar spatial patterns but also an almost identical distribution of the residence time.
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1. Introduction

From a dynamical point of view, the atmosphere is
a nonlinear system with an infinite number of degrees
of freedom. Although hydrostatic and geostrophic bal-
ance places constraints on the possible modes of at-
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mospheric variability, the number of states that the
atmosphere can assume is infinitely large. Yetitis a
matter of common synoptic experience that the at-
mosphere frequently adopts “preferred” flow patterns
that are both persistent and recurrent. This has led to
the notion of “weather regimes” or “flow regimes,”
and to the search of a rational basis to identify and
study them.

Although efforts to objectively define regimes date
back to the late 1940s—early 1950s ( Baur 1947; Namias
1950; Rex 1950), substantial progress has only recently
been achieved in this field. Flow regimes in the win-
tertime circulation over northern midlatitudes have
been identified on the basis of multimodality in the
one-dimensional or multidimensional probability
density function of circulation indices (Sutera 1986;
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Hansen and Sutera 1987; Molteni et al. 1988, 1990;
Kimoto 1989); cluster analysis (Mo and Ghil 1988;
Legras et al. 1988); and minimization of an average
time derivative (Vautard 1990). In addition, the search
for quasi-stationary solutions has led to the definition
of regimes not only in highly truncated models (such
as those of Charney and Devore 1979; and Reinhold
and Pierrehumbert 1982) but also in numerical models
with a reasonable number of degrees of freedom (Le-
gras and Ghil 1985; Mukougawa 1988; Vautard and
Legras 1988; Vautard et al. 1988). Finally, flow regimes
have been identified in general circulation models
(GCMs) of the atmosphere (Hansen and Sutera 1990).

Despite such progress and a good agreement between
diagnostic and modeling studies of localized regimes
like blocking (see Vautard and Legras 1988), a fully
objective definition and a satisfactory dynamical un-
derstanding have yet to be achieved in the case of plan-
etary-scale regimes such as those investigated by Mo
and Ghil (1988) and Molteni et al. (1990). Here dif-
ficulties arise because of the relatively large number of
degrees of freedom needed to describe even the large-
scale features of atmospheric variability. In observa-
tional studies, empirical orthogonal function (EOF)
analysis is often used to reduce the dimensionality of
phase space to a manageable size. Projections of at-
mospheric fields on the leading EOFs can subsequently
be used in cluster analysis or probability density esti-
mates in order to identify regimes. This approach has
had considerable practical success. The leading EOFs
explain a substantial proportion of the observed large-
scale variability, and indeed resemble recurring at-
mospheric patterns. It is very difficult, however, to in-
terpret EOFs dynamically, because they have no spe-
cific dynamical properties; consequently, there is no
straightforward link between the statistical framework
that we use to identify regimes and any dynamical the-
ory that can explain them. Furthermore, the relatively
simple numerical models in which quasi-stationary
states and regimes have so far been identified dynam-
ically cannot be easily used to interpret the observa-
tional results, because of the limited number of degrees
of freedom represented. This prevents an unequivocal
association between model regimes and observed plan-
etary-scale regimes.

The purpose of this paper is to present a strategy for
diagnosing and interpreting regimes in systems as mul-
tidimensional and complicated as the real atmosphere
that is firmly rooted in dynamical theory. We show
how to define a subspace of phase space with definite
dynamical properties, in which quasi-stationary solu-
tions are most likely to be located. The statistical
methods that have been developed to analyze the pro-
jections on EOFs can be applied to the projections on
this subspace, with the advantage of a more direct
physical interpretation of any regimes identified.

The axes that generate this subspace will be referred
to as neutral vectors. Given a plausible nonlinear dy-
namical model of the atmosphere, and a reference state
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that is likely to be an intermediate point between two
quasi-stationary states, we linearize the model about
the reference state and then define the neutral vectors
as those (orthonormal ) axes whose linearized time de-
rivative possesses the smallest amplitude. (In stability
theory, our neutral vectors correspond to the modes
that have near-zero growth rate and phase speed.) The
rationale behind our methodology is discussed in sec-
tion 2, and its validity is demonstrated in the context
of the well known Lorenz’s three-variable convection
model (Lorenz 1963) in section 3.

In section 4, we analyze the structure of neutral vec-
tors computed with a three-level quasigeostrophic
model, using basic states derived from the observed
wintertime climatology. In section 5, we show that these
neutral vectors do indeed describe important features
of wintertime low-frequency variability in northern
midlatitudes and that regimes can be identified by the
presence of a highly significant bimodality in the pro-
jection of atmospheric fields onto one of them.

Section 6 demonstrates a further advantage of the
neutral vector approach: if regimes are found in the
projections of atmospheric fields onto neutral vectors
computed by a linearized numerical model, the non-
linear version of that model can be used to test whether
quasi-stationary solutions aligned along the same neu-
tral vectors can explain the observed multimodality.
A long nonlinear integration of our quasigeostrophic
model produced a striking and very encouraging cor-
respondence between regimes generated by a relatively
simple dynamical model and regimes observed in the
real atmosphere. Finally, our results are discussed in
section 7, and possible extensions are suggested.

2. Neutral vectors and nonlinear stationary solutions

As a prototype of a nonlinear dynamical system rel-
evant to atmospheric dynamics, let us adopt a quasi-
geostrophic (QG) model based on the time evolution
of QG potential vorticity:

d
6—;’=~J(w,q)—D(¢)+S, (1)

where q is potential vorticity (PV), ¥ streamfunction,
D(¥) a linear operator that represents dissipative terms,
S a constant PV source, and J the Jacobian of a two-
dimensional field. Although Eq. (1) is the prognostic
equation for the evolution of PV at a single level, our
analysis also applies to a multilevel system of equations
of the form of Eq. (1) (and with appropriate general-
ization to any forced dissipative system with quadratic
nonlinearity). As is usual, we assume that the single-
level or multilevel field of PV is a linear function of
the (single-level or multilevel) streamfunction, which
is invertible under appropriate boundary conditions.

Let us assume that Eq. (1) possesses two stationary
solutions (¥, q;) and (¥», g;) that satisfy

~JW,q) - D)+ S=0 (2a)
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—J(¥2, @2) = D(¥2) + S = 0. (2b)

Defining the mean and the difference between the two
steady states:

Jl=¢1+‘//2 ¢,=¢1—‘//2

2 ’ 2
__ Gt 4 T
q D s 4 5
so that
Vi=v Y, =9 -y
@n=qd+q, m=q—q

and defining the operator:
LY, ¥')=—-J(¥, ¢')— J(¥', §) — D(¥'),
Egs. (2a) and (2b) can be written, respectively:
=JW, D -DA)+ S+ LA, Y) - JW,q)=0
(4a)
-J(¥,q) — DY)+ S - LY, ¥')— J¥', q') = 0.
(4b)

(3)

Subtractiﬁg Eq. (4b) from Eq. (4a), one obtains
L(y,y') = 0; (5)

L(¥, ¥') is simply the linearized time-derivative ‘op-
erator derived from Eq. (1) using the middle point
between the two stationary solutions (¥) as a basic
state, and applied to the vector ¢’ (the difference be-
tween the two steady solutions). A similar decompo-
sition of the flow into ¥ and ¥’ was proposed by
Schneider (1988) to diagnose responses to variations
in external forcing. Here, we use the technique to study
stationary states determined by internal dynamics.
Thus, if two stationary solutions exist satisfying Eq.
(1) and the middle point between them is known, even
if we are unable to solve the nonlinear Eq. (1), we can
detect along which axis the two solutions are aligned
by looking for a vector ' that satisfies the linear Eq.
(5). As mentioned in the Introduction, we shall call
such a vector a “neutral” vector (this definition requires
that such a vector not only has zero growth rate, but
also has zero phase speed in the linear model). In prac-
tice, not even ¥ is precisely known. In addition, ¥, and
¥, may be unstable stationary states. However, it has
been shown by a number of investigations (e.g., Legras
and Ghil 1985; Mo and Ghil 1987; Branstator and
Opsteegh 1989) that, during numerical integrations of
simple atmospheric models, the state vector of the sys-
tem can spend a considerable amount of time in the
neighborhood of stationary solutions even if they are
unstable. In other words, some unstable stationary so-
lutions can strongly influence the shape of the system
attractor, so that flow regimes occur around them. This
is not a recent idea; the famous Lorenz’s strange at-
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tractor (Lorenz 1963) is composed of two spirals
formed by trajectories that make loops around two
slightly unstable stationary solutions. In Lorenz’s sys-
tem, the two solutions have symmetric properties and
the mean point between the two steady states is rela-
tively close to the time-mean state obtained by a long
integration of the system, as we shall demonstrate in
the next section.

We now hypothesize that, if the climate of a dynam-
ical system can be seen as the alternation of two nearly
equally populated regimes, which occur in the neigh-
borhood of two unstable stationary solutions, then the
linear operator L computed using the time-mean state
of the system as a basic state will still satisfy Eq. (5) to
a useful degree of approximation. To the extent that
this is true, Eq. (5) can be used to find the axis along
which the two stationary states are aligned, given the
time-mean state.

It is interesting to note that Eq. (5) implies that

J(W, gy + J(W', @) = —D({), (6)

which says that the difference in the linearized PV ad-
vection in the two steady states is compensated by the
difference in the dissipation term. If the last two terms
on the rhs of Eq. (1) are combined to define a total
PV forcing as

F({)=-D —¥*),
where D(¥*) = S, Eq. (6) can be reexpressed as

JW, @y — @) + J(¥1 = ¥, @) = F($) = F(,).
(8)

Therefore, ¥, — ¥, can be formally seen as a linear
response to the variation in PV forcing between ¢, and
¥, themselves. This suggest that, as far as the diabatic
forcing is a function of the flow pattern, neutral vectors
are likely to be excited in linear numerical models when
the steady response to observed anomalies in diabatic
forcing is computed. One should not conclude, how-
ever, that nonlinear dynamics is unimportant in the
maintenance of multiple stationary solutions. The term
J(¥', q¢') in Egs. (4a) and (4b), which gives the self-
interaction of the neutral vector, may be large, but is
canceled out when the difference between the dynam-
ical balance of ¥, and ¥, is considered, as a conse-
quence of the quadratic nature of the Jacobian.

We now consider how to proceed, in practice, to
look for stationary solutions of the type found in the
Lorenz model in systems with a large number of degrees
of freedom. Our discussion suggests that we should lin-
earize the equations around the time-mean state ()
of the system and look for axes ¥’ such that, given a
suitable norm, | L(¥, ¥')| is small. If H is the linear
operator that inverts PV into streamfunctions, we can
obtain the time derivative of the streamfunction by
applying H to both sides of Eq. (1), and define for
simplicity:

(7)
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Ly’ = HL(, ¥'). 9
We therefore look for axes that minimize the ratio:
| Ly'12 (LY, Ly
A= = , 10
RS (10

where {, ) is an appropriate inner product. If L*is
the adjoint of L with respect to this inner product, we
have
2 _(LXLY, ¥
Ly
Since L*L is a positive-definite, self-adjoint operator,
it is stralghtforward to show that the axis for which A\?
is minimized is the eigenvector of L*L with the small-
est eigenvalue. The eigenvectors of L*L form an or-
thogonal basis, and for each eigenvector \? is equal to
the corresponding eigenvalue. In practice, when dealing
with atmospheric models and data, we can consider as
neutral vectors the eigenvectors for which 1/ is greater
than the typical decorrelation time for atmospheric
fields. Such vectors, which have a sufficiently small
growth rate and phase speed, define a subspace in which
one may hope to find a statistical proof of the existence
of stationary states and regimes.

It is important to stress that neutrality is a necessary
but not sufficient property of the vector that joins two
stationary states. Physically neutral vectors can be
thought of as linearly resonant patterns that can be
excited by weak forcing anomalies, and correspond to
the singular vectors of L studied by Navarra (1993).
Whether a particular neutral vector does link two
steady states depends on the full nonlinear balance of
terms in the PV equation. In practice, these special
vectors can be found by searching for bimodality in
the probability density function of the projections of
individual fields onto the neutral vectors. To illustrate
our ideas in a familiar and well-defined context, we
shall show how this procedure works in the case of
Lorenz’s attractor.

A (11)

3. Analysis of Lorenz’s dynamical system

As discussed in Lorenz’s (1963) paper, the well-
known Lorenz attractor is generated by a three-variable
dynamical system, which is a highly truncated spectral
model of Rayleigh-Benard convection. This simple,
nonlinear dynamical system has long been considered
as a prototype in which the problem of atmospheric
predictability can be studied (see, for example, Moritz
and Sutera 1981). Here, we are interested in the basic
form of the Lorenz attractor; in particular, in the fact
that its structure is determined by the presence of two
unstable stationary solutions, so that the motion along
the attractor is a combination of oscillations around
either of the steady states and transitions from the
neighborhood of one state to the other. The two spirals
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formed by the trajectories around the two steady states
can be seen as the regimes of the Lorenz model, and
the oscillations within them as the high-frequency
transients that eventually cause the transitions from
one regime to the other. In this section, we want to
show how these regimes can be identified by a com-
bination of the neutral vector analysis outlined in sec-
tion 2 and appropriate statistical techniques such as
time filtering and probability density estimation.

To do so, it is useful to start from a concise descrip-
tion of Lorenz’s convection model. A layer of fluid of
depth H is considered, where a temperature difference
between the lower and the upper surface is kept at a
constant value. Assuming that no motion and no vari-
ation in the variables occur in the third dimension, the
equations of motion can be expressed in terms of a
two-dimensional streamfunction field ¥, and of the de-
viation 6 of the temperature from a linear vertical pro-
file. With appropriate boundary conditions, and letting
Yo and 6, be appropriate normalization constants, Lor-
enz looks for solutions of the form:

% = XVE sm(wa ;1) sm(7r %)

0
YVE COS(‘ITCZ ﬁ) sm(vr-g) —-Z sin(21r %) .

8o
(12)

Here, X is an index of the direction and intensity of
the convective motion, Y of the horizontal temperature
difference between the ascending and descending cur-
rents, and Z of the deviation of the horizontally av-
eraged temperature from linearity. The geometrical
factor a sets the horizontal wavelength of the stream-
function field.

From the original part1a1 differential equations, the
following equation can be derived for the derivatives
of X, Y, Z with respect to (dimensionless) time:

X=—-0X+o0oY
Y=—-XZ+rX-Y
Z=XY—-bZ, (13)

where ¢ is the Prandtl number (kinematic viscosity/
thermal conductivity), r the ratio between the Rayleigh
number and its critical value for the onset of convec-
tioni and b a second geometrical factor equal to 4/(1
+ a“).

In addition to the trivial steady solution (0, 0, 0) for
r> 1, Eq. (13) possesses two other stationary solutions:

X =7Y==x[b(r—1)]'"?, (14)

Let C; be the solution with positive X and Y, C, the
other one. These two solutions are stable if r is lower
than

Z=r—1.
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co+b+3
c—b—-1"

hh =0

(15)

Above this threshold for r, the two solutions become
unstable, and the well-known strange attractor is gen-
erated by Eq. (13). The trajectory in phase space spirals
alternately around C| and C,, moving from the spiral
around C) to the spiral around C, at irregular intervals.
Physically, the switch between the neighborhood of C,
and C, corresponds to a reversal in the sense of rotation
of the convective cells, and in the phase of the hori-
zontal temperature variations. Apart from this phase
difference, the two steady states are physically equiv-
alent, since the intensity of the convective motion and
of the temperature gradient is the same. However,
variations in the intensity of convection and in the
temperature pattern occur within each oscillation
around either C, or C,.

The typical time of oscillation around C, and C, can
be deduced by linearizing Eq. (13) around these two
points. If, in general, (X, Yy, Zp) is chosen as a basic
state, the linearized dynamical system is given, in ma-
trix notation, by

d X—Xo -0 a 0 X—Xo

E Y — Y() = (r— Zo) —1 —XO Y — Yo

Z_Zo Yo XO -b Z_ZO
(16)

The 3 X 3 matrix on the rhs of Eq. (16) is the analog
of the operator L defined in the previous section. Fol-
lowing Lorenz, we set ¢ = 10, r = 28, b = 8/3. If we
then insert in Eq. (16) the values of X, Yy, Z, cor-
responding to either C, = (6V2, 6Vy2, 27) or C,
= (—6V2, —6V2, 27), we find one real, negative eigen-
value and two complex-conjugate eigenvalues for L.
The complex eigenvalues correspond to an unstable
normal mode with period 7' = 0.62; this mode accounts
for the oscillatory motion around C; and C,.

If we now numerically integrate Eq. (13) for ¢ = 630
dimensionless units (corresponding to about 1050 os-
cillations) and disregard the spinup period ¢ < 30, we
obtain long time series for X, Y and Z. We want to
analyze these data on the basis of the concepts discussed
in the previous section, and demonstrate that, without
the need to solve the nonlinear equations explicitly,
we can detect the existence of the two spirals (the two
regimes of the Lorenz system), and locate their centers
C and (; in phase space to a good approximation.

First of all, we note that C = (0, 0, r — 1) is the
middle point between C; and C,, and that (1, 1, 0) is
a vector proportional to C; — C;. By inserting the co-
ordinates of C in Eq. (16) one can verify that (1, 1, 0)
is a neutral vector for L. In order to have the projection
on this axis as one of the coordinates, we perform an
orthogonal rotation of X and Y by defining
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X' =V05(X+7Y)
Y' = V0.5(x - Y). (17)

Using these two coordinates together with Z, and the
values of the parameters indicated above, we have C;
= (12,0, 27)and C, = (—12, 0, 27), so that the two
solutions are aligned along the X' axis. Table 1 gives
the means and standard deviations of X, Y, X', Y,
and Z derived from our numerical integration, when
no filtering is applied to the data, and when each time
series is filtered by a running mean over a period ¢
= (.6 (almost identical to the oscillation period of the
unstable normal mode). As discussed by Mo and Ghil
(1987), X'is the coordinate with the largest variability
in both the unfiltered and the filtered data. The unfil-
tered values of X’ and Z have a comparable standard
deviation, however, whereas in the filtered data the
standard deviation of X’ is almost three times larger
than the standard deviation of Z, and more than seven
times that of Y'. One can conclude that most of the
low-frequency variance is explained by X"

Figure la shows the probability density function
(PDF) for the filtered and unfiltered values of X'. No
evidence of the existence of the two spirals can be de-
duced from the PDF of unfiltered data: the function
has only one maximum at zero. A very different picture
is obtained, however, when the high-frequency oscil-
lations are filtered out. The PDF for the filtered X'
shows an impressive bimodality, with maxima at +10
and —10 (C, and C, are located at X' = +12).

This statistical analysis clearly shows the existence
of low-frequency regimes in the Lorenz attractor;
however, it has been performed knowing a priori the
axis along which C; and C; are aligned, and the period
of the unstable normal mode of the system linearized
about these solutions. We shall now try to obtain the
same result without any a priori information on C;
and C, by projecting the time series of the original
variables X, Y, Z obtained from the numerical inte-
gration onto neutral vectors.

From Table 1, one can see that the mean values of
X and Y are very close to zero, and the mean value of
Z differs from its value in C, and C, by less than half
the standard deviation of the unfiltered data. Following
the notation of the previous section, let L be the linear

TABLE 1. Mean and standard deviation of unfiltered and filtered
values of the variables in Lorenz’s model.

X Y X' Y’ VA
Mean 0.01 0.01 0.01 0.00 23.52
Standard deviation
(unfiltered) 7.92 9.02 11.61 3.06 8.66
Standard deviation
(filtered) 6.29 6.53 8.98 1.24 3.32
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FIG. 1. (a) PDF of variable X' in the Lorenz model; dashed line:
unfiltered values; solid line: running means over 8¢ = 0.6. (b) PDF
of the projection on the first neutral vector of the Lorenz model,
filtered by a running mean over & = 0.4 (dashed line), 8¢ = 0.6
(solid line), 6t = 0.8 (dotted line).

operator obtained by using the time-mean state as the
basic state in Eq. (16). The eigenvalues and (normal-
ized) eigenvectors of L*L are listed in Table 2. The
eigenvector with the smallest eigenvalue is very close
to the X' axis (the correlation is 0.998); the second
eigenvector, with a slightly larger eigenvalue, is almost
parallel to the Z axis, whereas the third axis has a much
larger eigenvalue.

The significance of the first eigenvector is confirmed
by the PDF of the projection of X, Y, and Z onto it.
In the absence of indications from the normal-mode
analysis, a simple visual inspection (or a spectral anal-
ysis) of the time series will reveal the approximate time
scale of the high-frequency oscillation. We shall there-
fore try three filtering periods, namely, 6t = 0.4, 0.6,
and 0.8. The PDF of the projections onto the first ei-
genvector, filtered by a running mean over the above
indicated periods, is shown in Fig. 1b. The bimodality
along the first eigenvector is evident with all three filters;
a filtering time longer than the optimal one reveals it
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more clearly than a shorter time, but the distance be-
tween the maxima is closer to the true distance between
C, and C, when the shortest filtering period is chosen.
When 6¢ = 0.6 is used, the PDF of the projection onto
the first eigenvector is almost indistinguishable from
the PDF of the filtered X' shown in Fig. 1a.

The neutral vector analysis has successfully identified
the axis along which two stationary states are aligned
in the Lorenz dynamical system, and the projection of
time-filtered data onto the most neutral vector has
clearly revealed the existence of regimes around these
two states. It is important to note that we did not need
to solve the full nonlinear equations to identify such
axis. Because the climate of the Lorenz system is de-
termined by the alternation of two equally populated
regimes, the time-mean state provides a good approx-
imation to the middle point between the stationary
states in the definition of the linear operator L. We
shall now apply our ideas to the real atmospheric cir-
culation adopting a three-level quasigeostrophic model
as our dynamical framework.

4. Neutral vectors of the wintertime climatology in
quasigeostrophic dynamics

a. Formulation of the quasigeostrophic model

The model used in this study for the search of neutral
anomalies and quasi-stationary solutions in the at-
mospheric circulation is a spectral, three-level QG
model, with global domain and pressure as the vertical
coordinate. The basic equations from which it has been
derived are briefly discussed in appendix A. The series
of spherical harmonics used in the representation of
horizontal fields has a triangular truncation at total
wavenumber 21 (721). The model integrates prog-
nostic equations for QG PV at 200 hPa (level 1), 500
hPa (level 2), and 800 hPa (level 3) of the form:

d

= I, @)~ Dy ) + 5 (18a)
g _

i —J(¥2, @2) = D2(¥1,¥2,¥3) + 52 (18b)
aq3 _

—a‘t—-— —J(¢3, C]3)’_D3(\p2’ ¢/3)+S3: (180)

TABLE 2. Eigenvalues (\?) and eigenvectors of L*L
for the Lorenz model.

A2 X Y V4

5.62 0.673 0.738 0.048

7.11 —0.032 —0.036 0.999
215.46 0.739 —0.674 0.000
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where the index i = 1, 2, 3 refers to the pressure level.
Here PV is defined as

g =V — R — ) +f

@ =V + R —¥2) — R — ) +f
(19b)

(19a)

45 = Vs + RE2(Y2 — ¥) +f(1 + Hio) . (1%)

where /= 2Q sing, R, (=700 km), and R, (=450 km)
are Rossby radii of deformation appropriate to the 200-
500-hPa layer and the 500-800-hPa layer, respectively;
h is the (real) orographic height; and Hj a scale height
(set to 9 km).

In Egs. (18a)-(18c), D,, D,, D; are linear operators
representing the effects of Newtonian relaxation of
temperature, linear drag on the 800-hPa wind (with
drag coefficient depending on the nature of the under-
lying surface), and horizontal diffusion of vorticity and
temperature. The exact form adopted for these oper-
ators is given in appendix A. Here, we note only that
the temperature relaxation has a radiative time scale
of 25 days; the linear drag damps the low-level wind
on a spindown time scale of 3 days over the oceans,
about 2 days over low-altitude land, and about 1.5 days
over mountains above 2 km; a (strongly scale-selective)
horizontal diffusion damps harmonics of total wave-
number 21 on a 2-day time scale.

The terms S;, S;, and S; are time independent but
spatially varying sources of PV. Following Roads
(1987), these can be determined by requiring that,
when PV tendencies (i.e., time derivatives) are com-
puted from Eq. (18) for a large number of observed
atmospheric fields, the average values of these tenden-
cies must be zero. In practice, the S; terms can be com-
puted as the opposite of the average PV tendencies
obtained by inserting observed streamfunction fields
into a version of Eq. (18) in which these terms are
omitted. This is equivalent to assuming that the sample
of fields used in such a computation is representative
of a statistically stable climatology.

In section 6, we shall discuss how to define Sy, .S,
and S in a way compatible with the existence of two
atmospheric flow regimes. The simple technique de-
scribed above, however, was employed to obtain pre-
liminary estimates of S;, which were then used in non-
linear integrations aimed at determining the most ap-
propriate values for the model parameters. (Note that
the S; terms do not appear in the linearized version of
the model used to compute neutral vectors.) Since we
are interested in the wintertime variability in the
Northern Hemisphere, the parameters were optimized
for this region and period; the ensemble of observed
fields used in the estimates of .S; were ECMWF (Eu-
ropean Centre for Medium-Range Weather Forecasts)
analyses of streamfunction at the three pressure levels
for each day in January and February 1984 to 1989.
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A full description of the model climatology with the
“two-regime” PV source will be given in section 6,
where we shall discuss the results of a long nonlinear
integration. It suffices to say here that, despite the sim-
plicity of its assumed dynamics and physics, the model
exhibits a very realistic mean state and a remarkably
good simulation of wintertime extratropical variability;
in particular, the use of a global domain allows a re-
alistic description of the meridional structure of
Northern Hemisphere planetary waves.

b. Linearization and definition of the basic state

The QG model described in section 4a can be readily
linearized in order to compute, for any given basic state,
the operator L [defined by Egs. (9) and (3)], which
gives the time derivative of a streamfunction pertur-
bation. Using the nonnull spherical harmonic coeffi-
cients as coordinates of the phase space of the model,
the operator L can be written as a 1449 X 1449 matrix.
From this matrix, the adjoint operator with respect to
various inner products can also be computed. Here,
an inner product has been chosen such that the squared
norm of a streamfunction vector is proportional to its
total kinetic energy; in other words, the norm gives the
rms amplitude of the rotational wind.

As previously discussed, neutral vectors for the op-
erator L will be identified as the eigenvectors of L*L
with the smallest eigenvalues. Even though L*L is a
symmetric, positive definite operator, this is a com-
putationally demanding operation, given the size of
the matrix. A posteriori checks on the eigenvectors have
been performed, which have shown a high degree of
numerical accuracy even in the computation of the
eigenvector with the smallest eigenvalue.

In order to evaluate the sensitivity of the structure
of the neutral vectors (and of the associated eigenval-
ues) to the basic state and to the assumed form of dis-
sipative and forcing processes, neutral vectors have
been computed for the following five combinations of
model formulation and basic state.

1) The model has exactly the formulation given in
section 4a and appendix A; the basic state is the average
of the observed streamfunction in January and Feb-
ruary 1984 to 1989, which we shall refer to as the ob-
served climatology.

2) The model and the basic state are as in 1, but
the time scale for temperature relaxation is reduced
from 25 to 15 days.

3) The basic state is as in 1; the orography is ne-
glected in the definition of PV at 800 hPa, and an av-
erage, spatially uniform drag coefficient for the 800-
hPa wind is assumed, equal to (2.5 days)™!); here,
zonal asymmetries in the dynamics are only due to the
basic state.

4) The model is as in 3; the basic state is derived
from the observed climatology by progressively
smoothing the eddy streamfunction field in the north-
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ern subtropics, so that the stationary waves are retained
in the northern extratropics, but the basic state is re-
duced to the zonal mean climatology in the tropics and
in the Southern Hemisphere.

5) The model is as in 3, and the zonal mean cli-
matology is assumed as a basic state.

The damping of the stationary waves in the basic state
of case 4 was obtained by multiplying the eddy com-
ponent of the streamfunction field by the latitude-de-
pendent weight:

w(p) =1 — (cosp)* ¢>0
w(¢) =0 ¢ <0.

It is interesting to consider the differences between the
PV fields computed from the streamfunction of the
climatological and the modified basic state. The 500-
hPa PV of the two states is shown in Fig. 2. The removal
of tropical eddies produces a uniform meridional gra-
dient of PV in the northern subtropics, whereas regions
.of weak PV gradient exist at these latitudes in the cli-
matological field, which can cause local reflection of

for

for
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Northern Hemisphere planetary waves (e.g., Mclntyre
1982). We shall see that such changes in the tropical
PV structure have a radical effect on the pattern of our
neutral vectors.

¢. Characteristic time and spatial pattern of the
neutral vectors

We shall now discuss the properties of the neutral
vectors obtained with the combinations of basic state
and model parameters listed in the previous subsection.
If A2 is an eigenvalue of L*L , the inverse of its square
root A~! gives the ratio between the norm of the ei-
genvector and the norm of its linear tendency. It can
be interpreted as a characteristic time scale for the evo-
Iution of the eigenvector due to linear dynamics (ir-
respective of whether the perturbation is amplified,
damped, or just advected ). We shall use this parameter
to quantify the neutrality of different eigenvectors.

The characteristic time A~ is listed in Table 3 for
eigenvectors 1-5, 10, and 20 computed from the
model-basic state combinations 1-5. From the table,

] 1 !
). | |

\

F1G. 2. Quasigeostrophic potential vorticity (10 s~!) at 500 hPa computed from (a) observed
streamfunction climatology in January-February; (b) streamfunction climatology with eddies
progressively damped in the tropics and the Southern Hemisphere.
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TABLE 3. Characteristic times (days) of selected neutral vectors, for
various basic states and model formulations.

Case] Case2 Case3 Cased4 Case$
Eigenvector 1 2398 917 1969 307 192
Eigenvector 2 775 369 871 205 192
Eigenvector 3 405 254 407 179 97
Eigenvector 4 316 215 318 147 97
Eigenvector § 216 159 221 119 76
Eigenvector 10 105 83 112 74 66
Eigenvector 20 58 45 55 52 50

one can see that in each case neutral eigenvectors exist
with A~ at least one order of magnitude larger than
the typical decorrelation time of large-scale fields
(about 10 days). This is particularly true when the full
climatology is used as a basic state: the damping of
tropical stationary eddies (in case 4) increases consid-
erably the magnitude of the linear tendency for the
most neutral eigenvectors. The eigenvectors obtained
from the zonal-mean basic state (case 5) have even
larger tendencies. We therefore observe that the char-
acteristic time of the leading neutral vectors increases
with increasing amplitude and extent of the stationary
eddies.

The removal of orography and of land-sea variation
in the drag coefficient (case 3) has a marginal effect on
the eigenvalues. The increase in the intensity of tem-
perature relaxation (case 2) significantly affects the
magnitude of the tendency of the two most neutral
eigenvectors, but the change is about 25% or less from
the fifth eigenvector onwards, and is definitely smaller
than the change due to variations in the basic state.
We want to point out that, as far as the existence of
multiple quasi-stationary states is concerned, it matters
little whether a particular neutral vector has a char-
acteristic time of 200 or 150 days, as long as this time
is much longer than the typical lifetime of large-scale
regimes (about 10 to 20 days).

Let us now examine the spatial structure of the neu-
tral vectors. The first (about) 10 eigenvectors obtained
in cases 1, 2, and 3 are very similar to each other. The
eigenvectors pertaining to the zonal mean flow have
regular structures that bear little resemblance to ob-
served patterns of low-frequency variability. Therefore,
in the following we shall concentrate our attention of
eigenvectors from cases 1 and 4, keeping in mind that
their difference is due almost entirely to the change in
the basic state.

The three-dimensional structure of the most neutral
vector E, in the real climatology analysis (case 1) is
shown in Fig. 3; the fifth eigenvector from case 1, Es,
which will prove to be a very important one in the
subsequent analyses, is shown in Fig. 4; the first eigen-
vector E’ of case 4 is shown in Fig. 5. In these figures,
the vectors are normalized so that their rms wind am-
plitude is 5 m s™!, which is comparable to the rms
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amplitude of the projections of actual fields on these
vectors.

It is evident that E} has a more localized structure,
both in longitude and in latitude, than either E, or Es.
The eigenvector E'| has no significant features in the
Southern Hemisphere, apart from a wavenumber 2
pattern over Antarctica that is practically identical to
the most neutral vector of the zonal mean basic state.
In E, and E;, tropical features are particularly evident
at 200 hPa, with maximum amplitude in the eastern
Pacific. This is consistent with the existence of upper-
level westerlies and strong meridional PV gradient in
this area, allowing midlatitude stationary waves to ex-
tend meridionally into the tropics (see Webster and
Holton 1982).

In the northern midlatitudes, all three vectors show
an equivalent barotropic structure. The eddy compo-
nent of E; and Es is hemispheric in extent, whereas in

' the eddies are mostly confined to the Pacific-North
American sector. These eddy patterns can be better
seen in Figs. 6a, 6b, and 6¢, respectively, which show
the eddy fields of 500-hPa height computed from the
corresponding streamfunction fields by solving the lin-
ear balance equation. In both E, and E;, a wave pattern
covering the Pacific and the American continent ap-
pears to be reflected in the tropical Atlantic, and gen-
erate another wave pattern over the central Atlantic,
Europe, and northern Asia. It is likely that the non-
uniform structure of the subtropical PV gradient in the
climatological basic state is responsible for such a com-
plex wave pattern. In the basic state of case 4, the sub-
tropical PV gradient is a very weak function of longi-
tude (due to our smoothing of the tropical stationary
eddies), and the tropical belt tends to absorb midlat-
itude planetary waves. This wave absorption can be
noticed in E/ as well as in a number of other neutral
vectors of case 4.

We can ask ourselves whether the neutral vectors
resemble observed patterns of wintertime low-fre-
quency variability found by statistical techniques. Fig-
ures 6d and 6e show the fourth and the sixth empirical
orthogonal function (EOF) of the 500-hPa geopotential
eddies computed by Molteni et al. (1988) from a 32-
winter sample of 5-day mean fields. These two EOFs
have a clear resemblance to E; and Es, respectively.
On the other hand, localized variability patterns not
dissimilar from E' have been found by Horel (1981),
Barnston and Livezey (1987), and others by means of
rotated principal component analysis.

Finally, one can note that eigenvector E5 has a sig-
nificant projection on the well-known Pacific-North
American (PNA) teleconnection pattern defined by
Wallace and Gutzler (1981). A composite PNA
anomaly, computed by Molteni et al. (1990) from the
above-mentioned 32-winter sample, is shown here in
Fig. 6f. Although this map has (by definition ) most of
its variance in the PNA sector, like E}, a secondary
wave pattern also exists over the Atlantic Ocean and
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FIG. 3. Streamfunction (10° m? s™') at 200 hPa (top), 500 hPa (center), and 800 hPa
(bottom) of the neutral vector E,, with (rms wind) norm of 5 m s™'.

Eurasia, which is in phase with the Atlantic~-Eurasian 5. Observed low-frequency variability along neutral

part of Es. Our analysis suggests that the tropical PV vectors
structure over the Central American and Atlantic sector
may play an important role in determining whether a In order to assess the importance of the neutral vec-

PNA-like anomaly remains localized or becomes tors discussed in section 4 for atmospheric low-fre-
embedded in hemispheric-scale regimes like those quency variability, statistics of the projections of ob-
found by Molteni et al. (1990). served atmospheric anomalies onto them will be ex-
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FIG. 4. As in Fig. 3 but for the neutral vector Es.

amined here. In particular, we want to investigate
whether these projections can reveal the signature of
multiple regimes on a hemispheric scale. Given the
dynamical properties of neutral vectors discussed in
section 2, bimodality along neutral vectors would sup-
port the hypothesis that different regimes correspond
to multiple quasi-stationary solutions.

Although planetary-scale regimes may involve vari-
ations in the zonal mean flow, it has been shown that

their most evident signature is multimodality in the
PDF of indices of amplitude and phase of large-scale
eddies (see Sutera 1986; Hansen and Sutera 1987,
Molteni et al. 1988, 1990). Therefore, as in Molteni
et al. (1988, 1990), we shall use a dataset composed
of observed 5-day mean eddy fields of 500-hPa height
for the winter season (December to February), from
winter 1952/53 to 1983/84. This 32-winter sample is
derived from analyses of the U.S. National Meteoro-
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FiG. 5. As in Fig. 3 but for the neutral vector E’.

logical Center and of ECMWEF, and covers the North-
ern Hemisphere north of 20°N (see Molteni et al. 1988
for more details). Here, we shall consider the eddy
anomalies obtained by subtracting a (running)
monthly climatology from the original data. In addi-
tion, the 5-day mean removes most of the signal from
high-frequency baroclinic eddies, so that these fields
are representative of intraseasonal and interannual low-
frequency variations in planetary waves.

As partially anticipated in the previous section, the
500-hPa streamfunction of the ten most neutral eigen-
vectors of cases 1 and 4 has been converted to geo-
potential height by solving a linear balance equation.
The zonal means have then been subtracted, and the
eddy height fields have been renormalized so that their
rms amplitude from 20° to 90°N is equal to one. The
576 observed eddy anomalies have been projected onto
each of the eddy neutral vectors, and PDF for such
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FIG. 6. (a) Eddy geopotential height at 500 hPa of the neutral vector E;; (b) as in (a) but for
Es; (c) as in (a) but for EY; (d) EOF 4 of the geopotential eddies at 500 hPa, from Molteni et
al. (1988); (e) as in (d) but for EOF 6; and (f) composite PNA pattern, computed from 5-day
mean fields by Molteni et al. (1990).

projections have been computed using a Gaussian ker-
nel estimator (see appendix B). In the estimator, the
smoothing parameter has been set to such a value that,
given the size of our sample, any bimodality in a PDF
is statistically significant at the 95% confidence level.
The PDFs for the projection onto eigenvectors E,,
Es, and E/ (that is, on the renormalized patterns shown
in Figs. 6a, 6b, and 6¢) are shown in Figs. 7a, 7b, and

7c. The standard deviations of the three projections
are 24.6, 22.5, and 24.1 m, respectively, which are
comparable with the standard deviations of some of
the leading principal components (i.e., projections on
EOFs) of the eddy fields (see Molteni et al. 1988). The
first neutral vector E; of the real climatology is indeed
the one that possesses the largest standard deviation
among the 20 neutral vectors considered; however, its
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F1G. 7. PDF of the projections of observed 5-day mean eddy fields
of 500-hPa height (between 20° and 90°N) onto neutral vectors (a)
E, (b) E5, and (c) E).

PDF is unimodal, as well as the PDF of the projection
on E'|. On the other hand, the projection on Es shows
a highly significant bimodality, suggesting the existence
of two regimes aligned along this axis.

Among those considered, E; is the only neutral vec-
tor along which bimodality has been found. As men-
tioned previously, neutrality is a necessary but not suf-
ficient property of the vector linking stationary states
with opposite anomalies. So, the existence of many
neutral vectors with unimodal PDF is of no impor-
tance, provided at least one vector shows a significant
bimodality. The fact that no regimes can be identified
using the neutral vectors of case 4 (computed from an
artificially smoothed basic state) is probably not sur-
prising. As far as the neutral vectors of the real cli-
matology are concerned, one might still look for mul-
tiple regimes in linear spaces generated by more than
one neutral vector (we shall use this method to inves-
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tigate model regimes in the following section). Al-
though such multimodality would equally be physically
significant, we prefer at this stage to consider only pro-
jections on individual axes selected a priori, in order
to maximize the statistical significance of the results.

It is interesting to note that, on the hemispheric do-
main, Es is almost orthogonal to the wintertime sta-
tionary wave pattern (the spatial correlation between
the two eddy fields is 0.08). Therefore, bimodality
along E; means bimodality in the phase, rather than
in the total amplitude, of planetary waves, in partial
analogy with the bimodality in the Lorenz model con-
sidered in section 3. Although bimodality along Es
cannot explain the bimodality in planetary wave am-
plitude discussed by Sutera (1986) and Hansen and
Sutera (1987), it reveals a phenomenon of comparable
statistical significance and physical relevance, and can
indeed explain (as it will be shown in section 6) two
important atmospheric regimes found by Mo and Ghil
(1988) and Molteni et al. (1990).

In order to support our interpretation of the two
probability maxima (the two “modes”) in the projec-
tion on E; as evidence of the existence of two stationary
solutions, it must be demonstrated that bimodality does
not arise from a periodic process. This can be done by
studying the distribution of residence time, which is
the time interval in which the projection on E; remains
in one mode (either greater or lower than the value
corresponding to the relative minimum in the PDF),
A distribution in which the most frequent value is close
to the mean value would be the signature of a periodic
process; conversely, an exponential distribution would
imply that the probability of transition from one regime
to the other is independent of the time the system has
already spent in a given regime, and would suggest a
stochastic nature for the transition process. Dole and
Gordon (1983) found exponential distributions for the
durations of persistent anomalies, and Mukougawa
(1988) found similar results for the probability of per-
sistence of quasi-stationary states in his 28-variable
baroclinic model.

The histogram of residence times for Es (in pentads,
1.e., 5S-day periods) is shown in Fig. 8. The black bars
show the actual frequencies, while the white bars behind
show the best fit to those frequencies by an exponential
distribution. The agreement between the two is very
good, therefore excluding any periodicity in the tran-
sitions. The average residence time deduced from the
histogram is 3.2 pentads, that is, 16 days.

It is interesting to consider an example of a transition
between two real atmospheric states with large and op-
posite projections onto Es. Figure 9a shows the mean
500-hPa height over the Northern Hemisphere in the
pentad 5-9 January 1985; Fig. 9b shows the corre-
sponding map for 2-6 February of the same year, that
is, 27 days later. The first map has strong ridges over
the west coast of North America, the Atlantic, and west
Asia at 60°E, where Es has positive maxima; the second
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FiG. 8. Black bars: distribution of residence time in either the
“positive Es regime” or the “negative Es regime” (defined on the
basis of the minimum in the PDF in Fig. 7b) for the observed at-
mospheric fields. Shaded bars: best fit to the observed distribution
with an exponential distribution.

one has two ridges over the eastern Pacific and western
Europe, corresponding to the lows in Fig. 6b. In fact,
the difference map between the two fields (shown in
Fig. 9¢) is very similar to the eddy component of Es
(Fig. 6b), and also similar to the difference map be-
tween the averages of all atmospheric fields in the
“positive Es regime” and of those in the “negative Es
regime,” displayed in Fig. 9d. These figures show that
in this period a transition occurred between two large-
scale hemispheric anomalies aligned along an axis close
to Es, although in this particular example the amplitude
of the anomalies is larger and the transition time longer
than typical values.

We now want to discuss the importance of the vari-
ations in PV sources and sinks due to diabatic processes
in the maintenance of large-scale anomalies with op-
posite projections on Es. Figures 9e and 9f show the
mean sea level pressure fields in the two 5-day periods
considered above. The pressure field corresponding to
the positive phase of Es has a very deep Aleutian low
and a strong Siberian anticyclone. These two features
almost disappear in the surface field corresponding to
the negative phase of Es: the Pacific low, in particular,
is much weaker and shifted over the Kamchatka pen-
insula. Over the North Atlantic, the surface low is
shifted westward close to the Canadian coast in the
positive E; phase, with another minimum over the
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central Mediterranean Sea. As discussed more thor-
oughly in Marshall and So (1990), a decrease in the
intensity of the surface winds is indicative of a decrease
in the intensity of diabatic processes. At least over the
northeast Pacific and Siberia, the negative phase of Es
appears to be closer to a free-mode state than the pos-
itive phase.

In the QG model, the amplitude of the variations
of PV sources and sinks in opposite phases of E5 can
be easily evaluated. For this neutral vector, we com-
puted the contribution to the linear tendency of
streamfunction from the (linearized) PV advection
term and the relaxation-dissipation term separately.
We found an almost complete compensation between
the amplification induced by PV advection and the
damping due to diabatic processes, so that the total
linear tendency is more than one order of magnitude
smaller than each of the two terms.

6. Low-frequency variability in the nonlinear QG
model

a. Simulation of the wintertime climatology

In the previous section, neutral vectors of the lin-
earized QG model have been used to analyze observed
data, in order to find observational evidence of the
existence of multiple quasi-stationary solutions. In this
and the following section, we shall investigate whether
the observed regimes can be simulated in an integration
of the full, nonlinear QG model.

As discussed in section 4, in order to integrate the
nonlinear model, one must provide an estimate of the
PV sources S; that appear in Eq. (18). This can be
done by requiring that, for a given ensemble of observed
fields, the average PV tendencies vanish. If the overbar
represents the average over the ensemble, and a prime
denotes a deviation from the mean, one can write such
condition as

) _ - -
a—f =—J(¥, 9~ TW¥,qd) ~DF¥)+S=0, (20)

where for simplicity we have omitted the index of the
vertical level. The term

J=—=JW,4q) (21)
represents the contribution to the mean tendency of
the variability within the ensemble.

The procedure suggested by Roads (1987) to com-
pute S is equivalent to set ¥ equal to the observed cli-
matological mean and to compute J' using the full
range of observed variability. An alternative strategy,
frequently used for barotropic models (see, for exam-
ple, Simmons et al. 1983), is to neglect the term J'
completely and assume that the observed climatology
(or any other chosen basic state) is an exact stationary
solution.
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FI1G. 9. (a) Mean map of 500-hPa height in the period 5-9 January 1985; (b) as in (a) but for
the period 2-6 February 1985; (¢) difference between (a) and (b); (d) difference map between
the average of the 500-hPa height fields in the “positive E; regime™ and the average for the
“negative Es regime™; (€) and (f) as in (a) and (b), respectively, but for mean sea level pressure.
(Contour interval is 8 hPaj; values below 1013 hPa are dashed.)

A model will actually reproduce a mean state equal
to ¥ only if its internal variability is identical (more
precisely, if it produces the same J') to the variability
within the ensemble used for the computation of S. In
the case of a global, multilevel QG model, J’ cannot
be neglected, but not all forms of observed variability
can be reproduced (particularly in tropical areas).

Therefore, we shall try to include in S only the con-
tributions of modes of variability that can be simulated
in our model. In addition, we want to use the properties
of neutral vectors in order to make the PV sources
compatible with the existence of more than one regime,
as suggested by the bimodality along the neutral
vector Es.
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To achieve this, we shall require that a 5-day mean
state defined as the observed climatological mean ¥,
plus the vector Es (with a 5 m s~! amplitude, as in Fig.
4) and a second 5-day mean state defined as ¥, minus
E; (with the same amplitude) are both quasi-stationary
solutions of the QG model, in the presence of baroclinic
eddies with periods shorter than 5 days. These condi-
tions can be written as

—J(¥e, 40) — D(¥c) + S+ L(Ye, Es)
— J[Es, q(Es)] + J\ =~ 0 (22a)
~J(Ve, 4c) — D(¥e) + S — LY, Es)

—~ J[Es, g(Es)] + J_. = 0, (22b)
where L is the linear operator defined in Eq. (3) and

'+ and J_ are the contributions from high-frequency
baroclinic eddies in the two 5-day mean states. Since
Es is a neutral vector, the term L (¥., Es) has a very
small magnitude. To proceed further, we assume that
J'y and J_ are similar and can be approximated by an
average term J, (to be computed from a large sample
of high-frequency transients). We finally define

S =J(¥e, q) + D(¥.) + JEs, g(Es)] — J..  (23)
The term J/, has been computed from our sample of
observed streamfunction fields (January and February
1984 to 1989) as the difference between the average
PV tendency of daily fields and the average PV ten-
dency of 5-day means. Therefore, it represents the
forcing of the mean PV field by high-frequency tran-
sients defined as deviations from S5-day means. The
fact the J'. appears with a negative sign in the definition
of S means that we expect the QG model to generate
a term close to J’. by its own high-frequency baroclinic
eddies. In this case, the sum of the eddy forcing and
the constant source S should approximately compen-
sate the PV tendency due the 5-day mean flow in two
states aligned along the Es vector; low-frequency vari-
ations should therefore occur along this axis.

If our definition of S is appropriate, the QG model
should indeed reproduce the observed wintertime mean
state and the low-frequency and high-frequency vari-
ations of streamfunction (at least in the northern ex-
tratropics) in a realistic way, when a long integration
is performed with S given by Eq. (23). Such a “per-
petual winter” integration has been carried out for 4500
days (equivalent to 50 90-day winters), after a spinup
period of 360 days. Figure 10 shows the model-gen-
erated mean zonal wind at the three pressure levels,
averaged over the 50 winters, and compared with the
observed climatological values for January-February.
Given the simplicity of the model, the agreement is
remarkably good, the main discrepancy being an un-
derestimation of the Southern Hemisphere jet in the
lower troposphere and a northward shift of its maxi-
mum by about 10 degrees.
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Figure 11 shows maps of the mean and standard
deviation of the 500-hPa streamfunction from model
and observed fields. The standard deviation is shown
separately for 5-day mean fields and deviations from
5-day means, in order to evaluate the low-frequency
and high-frequency components of the model vari-
ability. Overall, the model mean field has a realistic
pattern, but the amplitude of the stationary waves is
underestimated. The model distribution of low-fre-
quency variability is very good, with the three maxima
in the North Pacific, North Atlantic, and northwestern
Siberia (around 60°E) plausibly reproduced. The
maxima are about 20%-30% lower than the observed
ones, but one must take into account that interannual
variations related to surface forcing cannot be simu-
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FiG. 11. Statistics of 500-hPa streamfunction (10° m? s™!) from the 50-winter integration of
the QG model and from observed fields in January-February 1984-89. (a) Mean field of the QG
model; (b) low-frequency standard deviation in the QG model (from 5-day mean fields); (c)
high-frequency standard deviation in the QG model (from deviations from 5-day means); (d),
(e), and (f) as in (a), (b), and (c) but computed from observed fields.

lated by this model. Finally, high-frequency variability
is of the correct magnitude in the Pacific sector, some-
what underestimated in the Atlantic, but with no clear
separation between the two storm tracks over the
American continent.

Does the definition of .S in Eq. (23) give more sat-
isfactory results than alternative ones? An integration

in which S was defined without taking into account
the effect of high-frequency eddies [i.e., neglecting the
term J, in Eq. (23)] showed, as expected, a much
poorer zonal mean wind over the Northern Hemi-
sphere and a very weak pattern of stationary waves. A
definition based simply on the average tendency for all
daily fields gave practically the same mean flow but a
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less realistic variability in the Northern Hemisphere,
and even larger errors in the mean over the Southern
Hemisphere. In summary, among those tested, the PV
source defined by Eq. (23) has provided the most re-
alistic climatology overall, both in terms of the mean
and the variance.

b. Regimes in the QG model

We have discussed in section 6a how the PV source
for the nonlinear QG model has been computed on
the assumption of the existence of two quasi-stationary
states in the atmospheric flow. Here, we will show that
(at least) two regimes indeed exist in the model cir-
culation, similar to those found in the real atmosphere.

As done previously, we looked for the existence of
multimodality in planetary waves by projecting model
fields from the 50-winter nonlinear integration onto
the eddy components of neutral vectors. In this case,
the neutral vectors were computed using the time-mean
streamfunction of the 50-winter model integration as
a basic state. For consistency with the data analysis in
section 5, we converted 500-hPa streamfunction fields
into geopotential height by solving the linear balance
equation, and we constructed a sample of 900 non-
overlapping 5-day means from daily data. These fields
were projected onto the eddy components of neutral
vectors (also converted to geopotential) in the area
20°-90°N.

Before discussing the results of the projections, we
want to describe briefly the structure of some of the
neutral modes computed from the model climatology.
Figures 12a-d show the 500-hPa eddy height fields for
neutral vectors 1, 2, 4, and 6 (again, they are in order
of increasing amplitude of the linear time derivative).
We shall call these vectors Ey,,,, E,,,,, . . . etc. The eddy
fields can be compared with those shown in Figs. 6a
and 6b for vectors E, and Es from the observed cli-
matology.

The neutral vector E;,, is quite similar to E,, al-
though it has a much lower amplitude over North
America. Vector E,,, is strongly negatively correlated
with E,,,, over the Northern Hemisphere (but positively
correlated over the Southern Hemisphere, the two vec-
tors being orthogonal on the global domain ); however,
it has less amplitude than E,,,, over northeast Asia, and
most of its spatial variance is in the Atlantic, European,
and west Asian regions. Vector E,4,, has a quite similar
structure to that of Es, but over the Atlantic Ocean its
highs and lows are more zonally elongated than those
in Es, so that zonal wavenumber 2 is more evident
than wavenumber 3 in E,,, (the opposite is true for
Es). A zonal wavenumber 3 pattern appears in Eg,,,
but its structure is clearly orthogonal to both E,,,, and
E;. The characteristic time X\ ~! for these neutral vectors
is 1880, 602, 350, and 205 days, respectively.

The projections of the model-generated eddy height
fields on the first 10 neutral vectors did not reveal bi-
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modality along any individual vector. Quasi-stationary
states may be aligned along a linear combination of
neutral vectors, however. Therefore, we decided to ex-
amine two-dimensional PDFs of the projections of
eddy fields onto the plane generated by two neutral
vectors. In the choice of the two axes, one can be guided
by three criteria:

1) the ordering of the neutral vectors as determined
by their characteristic time (i.e., by the magnitude of
their time derivative);

2) the similarity with the pattern along which re-
gimes have been found in the real atmosphere; and

3) the variance of the projections onto individual
neutral vectors.

The first criterion obviously leads to the selection of
E,,..; the second one suggests selection of E,,,,. It turned
out that the projection of eddy fields on E,,, had the
largest variance among all the neutral vectors consid-
ered. On this basis, and given the similarity between
the first and the second neutral vector over the North-
ern Hemisphere, we chose to project the model eddy
fields onto the plane generated by neutral vectors E,,,,
and E,,,.

Since these two vectors are not exactly orthogonal
when considered as eddy geopotential fields in the re-
gion 20°-90°N, they were reorthonormalized on this
domain. We chose to keep the pattern of E4, un-
changed; in the following, the projection on the eddy
part of E,,,, will be the y coordinate of our plane, while
the x coordinate corresponds to the eddy component
of E,,, that is orthogonal to E,,,. The two renormalized
axes are shown in Figs. 12e,f.

Estimations of two-dimensional PDFs are obviously
more subject to sampling problems than unidimen-
sional PDFs. To avoid noisy estimates in regions of
low density, we used an iterative version of the kernel
estimator (see Silverman 1986), described in appendix
B. In addition, to test the stability of our results, we
computed the PDF for various subsamples including
10 or 20 consecutive winters (again, 1 winter is 90
days).

The inspection of the PDFs in these subsamples re-
vealed an unexpected behavior of the model regimes.
The PDF for the first 10 winters (Fig. 13a), although
clearly different from a multinormal function, is es-
sentially unimodal, whereas all the other 10-winter
PDFs (not shown ) possess at least three density max-
ima. A more stable picture is obtained from the PDFs
computed from the two subsamples including winters
11-30 and 31-50, which are shown in Figs. 13b and
13c, respectively. Disregarding maxima defined in a
very small neighborhood, two major maxima appear
in the PDF for winters 11-30, aligned along an axis
roughly parallel to (E,,, + E4,,). In the PDF for winters
31-50, the two most important maxima are aligned
along a similar axis, but their separation is much larger.
A third significant maximum appears close to x = 10,
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F1G. 12. Eddy geopotential height at 500 hPa corresponding to the neutral vectors (a) E,,,
(b) Ezm, (¢) E4p, and (d) Eg,,,, with a (rms wind) norm of 5 m s™!; (e) and (f): as in (a) and
(c), respectively, but reorthonormalized in the area 20°~90°N (rms amplitude is 1).

y = —20, not far from the position of a less evident
maximum in the PDF of the previous 20 winters.

In order to examine whether the apparent trend to-
ward a greater separation of the model regimes per-
sisted, and whether the unimodality in the first 10 years
was really an exception, we decided to continue the
integration of the QG model for 40 more winters. The
time-mean state of the model in these winters was vir-

tually identical to the mean state in the previous 50
winters, so there was no need to recompute the neutral
vectors. The new streamfunction fields were again av-
eraged over pentads, converted into geopotential
height, and projected onto the same axes used for the
analysis of the past 50 winters.

The PDF of the projections of eddy fields in winters
51-90 on the E;,~E,,, plane is shown in Fig. 13d. As
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FI1G. 13. Two-dimensional PDF of the projection of model-generated eddy fields of 500-hPa height onto the plane
generated by neutral vectors E,,, and E,,,. The x axis corresponds to the projection onto the component of E,,, that
is orthogonal to E,,, in the area 20°~90°N (Fig. 12e), the y axis to the projection on E,,, (Fig. 12f). (a) From data in
winters 1-10; (b) winters 11-30; (c) winters 31-50; and (d) winters 51-90 from the extended integration.

in Figs. 13b and 13c, two major regimes are evident
along an axis nearly parallel to (E;,, + Eg,,). Their
separation is smaller than in winters 31-50 but larger
than in the winters 11-30 subsample. No individual
10-winter subsample from the new data showed a uni-
modal distribution. Finally, a smooth bimodal PDF
can be obtained by merging the data from winters 11-
90; this is shown in Fig. 14.

One can conclude that, despite oscillations in the
exact position of the maxima, the model possesses two
fairly stable regimes that are aligned along a linear
combination of its first and fourth neutral vector. Since

the time in which the model appeared to have reached
a stable mean state, however, it took about ten more
winters to stabilize its low-frequency variability, so that
regimes became evident in two-dimensional density
estimates. With regard to this long adjustment time,
we point out that this phenomenon was already noticed
in a long perpertual winter integration of a GCM,
namely, the CCMOB model developed at the U.S. Na-
tional Center for Atmospheric Research (Hansen, pri-
vate communication ). In this case, a bimodality in the
amplitude of planetary waves that appeared to be sta-
tistically significant in a 1200-day integration (see
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FIG. 14. As in Fig. 13 but from data in winters 11-90.

Hansen and Sutera 1990) could not be found any
longer when the integration was extended to a total of
6000 days. :

From the results discussed so far, we can deduce
that the sample including data from winters 11 to 90
(for a total of 1440 pentads) is sufficiently homoge-
neous, and assume the PDF in Fig. 14 as a reliable
estimate of the climatological PDF of the model. We
shall now examine whether the axis along which the
QG model has bimodality is similar to the pattern along
which bimodality was found in the observed data.

Figure 15a shows the difference between the patterns
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corresponding to the two density maxima in Fig. 14;
this pattern is simply a linear combination of (eddy)
neutral vectors E,,, and E,,,,. In order to compare the
difference between the centroids of the two regimes of
the QG model with the corresponding map for the real
atmospheric regimes described in section 5, we have
classified each field in the 80-winter sample in either
of the two regimes defined by the density maxima in
Fig. 14. To do so, starting from the projection of a
given field in the E,,~E,,, plane, one can “climb” the
PDF along the direction of its gradient until a density
maximum is reached.

The difference between the averages of the (full)
height fields classified in the two regimes is shown in
Fig. 15b. Comparing this with Fig. 9d (the equivalent
map for the observed regimes), one can see that the
position of midlatitude highs and lows is in very good
agreement. The similarity is definitely weaker north of
60°N, because of the different meridional extent of the
various midlatitude features. In particular, the mid-
Pacific low is much deeper in the atmospheric than in
the model difference map, and extends farther north.

In a number of previous works (Mo and Ghil 1987,
1988; Molteni et al. 1988, 1990; Kimoto 1989), at-
mospheric regimes have been sought by analyzing
PDFs or performing cluster analysis on linear subspaces
generated by the leading EOFs of atmospheric fields.
We can ask ourselves whether the regimes found along
neutral vectors agree with at least some of the clusters
found in such EOF-based studies. Figure 16 shows the
patterns of clusters 1 and 2 found by Mo and Ghil
(1988), and of clusters C'2 and C’5a found by Molteni
etal. (1990). These maps confirm the existence of two
atmospheric regimes with opposite anomalies, and a
hemispheric spatial pattern which is in good agreement
with the axes along which the centroids of the observed
and the model-generated regimes found in this study
are aligned (see Figs. 9d and 15b, respectively). The
fact that our regimes appear to be less separated than

FIG. 15. (a) Difference between the two patterns corresponding to the density maxima in Fig,
14; (b) difference between the centroids of the two clusters defined from the density maxima.
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FIG. 16. Anomalies corresponding to the centroids of (a) cluster 1 and (b) cluster 2, found by Mo and
Ghil (1988), and of clusters C'2 (c¢) and C’5a (d) found by Molteni et al. (1990). In (a) and (b), shading
indicates statistical significance at 95% confidence level.

the EOF-based regimes is mainly due to the fact that
here we are considering a two-regime partition, rather
than a multiregime partition, of the data. °

Given the simplified nature of the QG model, the
agreement between its regimes and the atmospheric
regimes is clearly satisfactory, as far as their spatial pat-
tern is concerned; however, the similarity becomes
striking when the distribution of residence times is
compared. The distribution for the model regimes is
shown in Fig. 17. As for the observed regimes defined
by E; (see Fig. 8), the black bars in the histogram show
the actual frequencies of different residence times, while
the shaded bars in the background give the best fit with
an exponential distribution. The exponential distri-
bution, which fits the model data very closely, is prac-
tically indistinguishable from the distribution fitted to
the observed data, and the mean residence time in the
model regimes is 3.2 pentads (16 days), identical to

the observed value. Quasigeostrophic dynamics seems
therefore able to explain successfully both spatial and
temporal aspects of planetary-scale regimes in the win-
tertime circulation over northern midlatitudes.

7. Discussion

In this work, we have shown how a property of sta-
tionary solutions in dynamical systems with quadratic
nonlinearity (namely, the fact that the difference vector
between two such states has a null time derivative in
the equations linearized around the middle point) can
be exploited to select a linear subspace of phase space
in which quasi-stationary states can be sought. In the
case of Lorenz’s three-variable dynamical system, the
most neutral vector of the operator linearized around
the time-mean state of the system (i.e., the vector with
the smallest amplitude of the linear time derivative)
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FiG. 17. As in Fig. 8 but for the residence time in
the two regimes (clusters) of the QG model.

gives an excellent approximation to the difference vec-
tor between the two stationary solutions. In the case
of a three-level QG model linearized about the mean
state of the real atmosphere, a statistically significant
bimodality can be found in the projection of observed
eddy fields onto the fifth neutral vector; this vector can
be described as a combination of the PNA teleconnec-
tion pattern with a second wave pattern covering the
Atlantic and Eurasia.

Bimodality found along a neutral vector of a lin-
earized model is dynamically consistent with the ex-
istence of two stationary solutions in the nonlinear
version of the model. The condition for the actual ex-
istence of such solutions is the presence of an appro-
priate source term for the model variables (in our case
PV). We have computed a PV source for the QG model
that could maintain (under certain hypotheses) two
quasi-stationary solutions corresponding to opposite
phases of the neutral vector along which bimodality
was found in the observed data. This source term
proved to be an appropriate one: a long integration of
the nonlinear model generated a realistic time-mean
field and variance distribution, as well as two regimes
with a very similar spatial pattern and almost identical
distribution of residence times compared to the ob-
served regimes. Again, the model regimes could be de-
tected by the presence of bimodality in the PDF of the
projections of eddy fields onto the plane generated by
two neutral vectors computed from the model time-
mean state.
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Although our classification reveals a coarser structure
of phase space than the one proposed in other studies,
the important achievement of this work is that, thanks
to the dynamical properties of neutral vectors, we have
been able to demonstrate that our regimes can be
maintained in a realistic QG model in the neighbor-
hood of two quasi-stationary solutions. This result
provides a strong dynamical support to the existence
of planetary-scale flow regimes: our QG model does
not suffer from such serious problems of severe trun-
cation or unrealistic boundary conditions as simpler
dynamical models used in earlier studies. On the other
hand, the empirical way in which the PV forcing has
been determined is not fully satisfactory, and a more
physically based definition of the PV sources and sinks
is needed to achieve a deeper understanding of the
maintenance of multiple regimes. This is particularly
important in view of the crucial role forcing plays in
selecting which of the neutral vectors corresponds to
the axis linking stationary states with opposite anom-
alies.

The role of transient eddies also deserves further in-
vestigation. A possible weak point in our analysis is
the assumption that the PV forcing by high-frequency
baroclinic eddies is very similar in different quasi-sta-
tionary states. It has been shown, in both diagnostic
and modeling studies, that this is not the case for the
alternation between blocked and zonal regional regimes
(Green 1977, Illari and Marshall 1983; Shutts 1986;
Haines and Marshall 1987; Hoskins and Sardeshmukh
1987; Vautard and Legras 1988). Given the fact that
neutral vectors explain the patterns of at least some of
the observed hemispheric regimes but the maxima in
the PDF are found for low-amplitude anomalies, it
seems plausible that quasi-stationary solutions of the
large-scale flow (in the presence of nearly constant eddy
forcing) can explain the location of the PDF maxima,
and therefore the preferred hemispheric patterns of
persistent regimes, but variations in the eddy forcing
are probably needed to amplify such anomalies to the
stage in which blocking highs develop from the large-
scale ridges of the hemispheric regimes.

Finally, we point out that the concept of neutral
vectors, and the possibility that some of them are the
difference patterns between nonlinear quasi-stationary
states, places in a new perspective the results of a num-
ber of previous studies based on linearized models.
Since the work of Hoskins and Karoly (1981), many
investigators have tried to explain patterns of extra-
tropical low-frequency variability in terms of the steady
response of a linear, adiabatic model to a prescribed
anomaly in diabatic forcing. In a recent and intriguing
study, Branstator (1990) showed that some of the EOFs
derived from a long integration of the NCAR Com-
munity Climate Model can be reproduced by the EOFs
of a large sample of fields computed as linear responses
to random forcing fields. One could argue, however,
that the typical magnitude of the observed anomalies
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does not justify a linear approximation, and that the
distribution of anomalous diabatic forcing is to a large
extent a function of the large-scale flow.

With the possible exception of studies concerned
with the response to SST anomalies, one can reinterpret
many of these results by saying that the steady linear
response of an adiabatic model to an anomalous forcing
just “selects” the neutral vectors that can balance this
forcing by PV advection. In reality, the change in mid-
latitude and subtropical diabatic forcing may be the
result of the switch between two quasi-stationary states
with nearly opposite anomalies; in this case, the non-
linear advection terms can be balanced by a constant
source that does not appear explicitly in the linear
model. From this point of view, the results of linear
studies are not necessarily incompatible with a nonlin-
ear dynamical description of low-frequency variability.
With an appropriate interpretation, linear models can
still be very useful in the understanding of planetary
flow regimes.
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APPENDIX A

Basic Principles and Dissipative Terms
in the QG Model

The formulation of the quasigeostrophic model used
in this study is based on standard filtered prognostic
equations for vorticity and temperature. Expressing
relative vorticity as the Laplacian of streamfunction,
and temperature in terms of the vertical derivative of
geopotential through the hydrostatic relationship (e.g.,
Haltiner and Williams 1980), the vorticity and ther-
modynamic equations can be written as

7] Ow
— V% = -V, V(V2 + fo— 1
V= Ve VNN RS (A
4 3P 0P

- = v,. VI

3 9p v P ow, (A2)

where all symbols have their usual meteorological
meaning, and dissipative and forcing terms are omitted
for simplicity. In particular, we note that a constant
value f; is used in the stretching term of Eq. (A1), and
the static stability parameter o in Eq. (A2) is assumed
to be a function of pressure only.

When Egs. (A1) and (A2) are combined using the
relationship:

Vo = fVy (A3)
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one obtains the following prognostic equation for QG
potential vorticity:

g

9 2 20

3 ) 0. (A4)
It is well known that a constant value f; must be used
in the stretching term of (A1) and in (A3) in order to
obtain energetic consistency (see Mak 1991 for a thor-
ough discussion of the quasigeostrophic approximation
on the sphere). However, since the squared value of f;
appears in Eq. (A4), the PV equation appropriate to
the Northern Hemisphere is also appropriate in the
Southern Hemisphere if one assumes (fo)sy = —(/5)nu.-
Our global QG model can be considered as the result
of coupling two hemispheric models at the equator,
where continuity of the streamfunction and PV fields
is assumed. Although here our primary interest is the
Northern Hemisphere flow, the global domain avoids
the introduction of boundary conditions at the equator
(assumed, for example, in the hemispheric model of
Marshall and So 1990), which might affect the structure
of planetary-scale waves and regimes. It also permits
direct use of observed streamfunction fields for the
construction of basic states and forcing terms.

The vertical discretization of Eqs. (Al)-(A4) at
three levels is standard, and leads to Egs. (18a)~(18¢)
presented in section 4a. In these equations, dissipative
and forcing terms have been added to represent the
effects of diabatic processes. The dissipative terms, in-
dicated symbolically as —~D;, —D,, — D; at the three
pressure levels of 200, 500, and 800 hPa, respectively,
include contributions from temperature relaxation,
Ekman dissipation, and horizontal diffusion:

—-D, =TR; ~ H, (AS)
—D; = -TR|; + TRy; — H, (A6)
—D; = —=TR,; — EK; — Hj. (A7)
The term:
TRy, = 7' RT* (Y1 — ¥2) (A8)

represents the effect of temperature relaxation between
levels 1 and 2, with a radiative time scale 7 = 25 days;
the corresponding term for temperature relaxation be-
tween levels 2 and 3 is

TRy = 7' R3* (Y2 — ¥3).

Ekman dissipation is expressed as the vorticity ten-
dency due to a linear drag on the 800-hPa wind:

(A9)

0
EK; = (a cos¢) ™! [53: [\, ¢, h)v;]

- % [E(N, ¢, h)us cosd;]} , (A10)
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where A is longitude, ¢ latitude, 4 the orographic height,
a the average earth radius, and

—1 6\03 a¢3
—-a~ — -
¢’ aA
The drag coefficient k is dependent on the land-sea
mask and on the orographic height:

k(X ¢, h) = 7' [1 + aLS(N, ¢) + auFH(A)],
(A1l)

where 7z = 3 days, a; = ay = 0.5; LS(}A, ¢) is the
fraction of land within a grid box; and

FH(h) =1 — exp[—h/(1000 m)].

Since LS and FH vary between O and 1, &k varies
between (3 days)™! over the oceans, (2 days)™' over
zero-altitude land, and about (1.5 day)~! over moun-
tains higher than 2000 m. [ The gridpoint values of
orography and land-sea mask are derived from the
spectral T21 representation of the actual high-resolu-
tion fields, and represent averages over areas of the
order of (1000 km)2.] If one neglects the spatial vari-
ations in the drag coeflicient by setting oy = a; = 0,
Eq. (A1l) reduces to the simple form:

EK; = 75 V2. (A12)

Finally, at each pressure level, the time-dependent
component g; of PV (i.e., PV minus planetary vorticity
and orographic component) is subject to a scale-selec-
tive horizontal diffusion:

H; = CHVBQQ,
where the coeflicient
cy =7R'a®(21-22)7* (A14)

is such that spherical harmonics of total wavenumber
21 are damped with time scale 75 = 2 days.

Uy = v; = (@ cosp) ™

(A13)

APPENDIX B
The Kernel Estimator of PDFs

Let {x;,i=1, +«+, N} be a sample of observed
values of a variable x. The kernel estimate of the PDF
of x can be written as

N
PDF(x) = N"!' 3, K(x — x;, r), (B1)
1
where K(x', r) is a kernel function with the following
properties:

K(x',r)=0

f K(x', rydx' =1
D

f K(x', r)x'dx' = 0;
D
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x'=x — x; and D is the domain over which Kis greater
than zero. The parameter r determines the “radius of
influence” of each observed value x;: the larger is 7,
the smoother is the PDF.

In practice, the optimal value of r depends on the
number of available data. When one looks for multi-
modality in a PDF, r should be large enough that if
the kernel estimator is applied to a sample of N data
extracted at random from a population with a (a priori
known) unimodal distribution, the probability of ob-
taining a multimodal estimate is lower than a given
threshold (usually 5% or 10%). This probability, as a
function of r, can be evaluated by Monte Carlo test
(see Silverman 1981).

In this paper, estimates of PDFs in one dimension
have been obtained using a Gaussian function as ker-

nel:
_ 1 x' 2
K(x',r)= (Vﬂr) ! exp[— 3 (7) ], (B2)

where r = 0.25 o, and o is the standard deviation of
the sample {x;}.

Equation (B1) can be easily generalized to more than
one dimension. In two dimensions, given a sample
{(x;y:),i=1, - -+, N}, one can write

N
PDF(x,y) = N7' 2, K(X = Xi, ¥ = Vi, Fxs 1)
1

(B3)
and assume

K(x', y'") = 2mryr,)™

1 (x> 1/{y'\°
xew| =5 (5) -3 (2)] @0

However, for samples of the size used in observational
studies of atmospheric low-frequency variability (typ-
ically a few hundred independent data), the use of a
fixed radius of influence already creates problems in
two dimensions: values appropriate to estimate the
PDF close to the mean point give a noisy estimate for
large deviations from the mean. This problem can be
overcome by assuming an influence radius depending
on the data density itself (see Silverman 1986). A “first-
guess” PDF, computed with a fixed influence radius,
can be used to estimate the density d; at each point
(X;i, y:). The final estimate of the PDF can be obtained
as

N
PDF(-xa y) = N_l Zi K(X - Xi, y - yi’fl:rx’fl:ry)5

1 .

(BS5)

where f; is a factor proportional to d7'/?. In this way,

the area influenced by each observed value (x;, y;) is

inversely proportional to the local density, and there-

fore, in each point (x, y) of the plane the number of
observations that contribute significantly to the final
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density estimate is approximately constant. This iter-
ative technique has been used to compute the two-
dimensional PDF shown in Figs. 13 and 14.
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