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ABSTRACT

Equilibration of planetary waves toward free-mode forms, steady solutions of the unforced, undamped equations
of motion, is studied in a three-level quasi-geostrophic model on the hemisphere. A thermal mechanism is
invoked, parameterized as a Newtonian process Q = — (7 — T*), relaxing the atmosphere toward a radiative-
convective equilibrium temperature 7* on v ' time scales. If T* is chosen to project onto the class of finite-
amplitude stationary Rossby waves, T can closely approach T* if, simultaneously, the surface winds vanish
switching off the Ekman layers at the surface. The equilibrated state is characterized by vertical phase lines,
zero surface winds, vanishing diabatic heating rates and a temperature field that is phase-locked with T* cor-
responding to ridges over the oceans and troughs over the land. The form of the equilibrated planetary wave is
contrasted with the classical thermally forced response obtained when T* does not have free-mode form.
Anomaly fields calculated from the model, the difference between equilibrated and nonequilibrated waves, have
a characteristic pattern which is reminiscent of Rossby wave trains. '

1. Introduction

Since the classical studies of orographic (Charney
and Eliassen 1949) and thermal (Smagorinsky 1953)
forcing of planetary waves there has been a continuing
debate concerning the relative importance of diabatic
and orographic forcing in determining the extra-trop-
ical wave pattern—for recent reviews see Hoskins and
Karoly (1981) or Held (1983). In such studies a sea-
sonal or climatological diabatic forcing, Q, is consid-
ered to be a fixed function of space (for example, as
deduced from a residual budget calculation) and one
seeks the linearized response about a zonal flow subject
to lower boundary conditions set by orography.

In reality of course Q is not a fixed function of space
but is strongly controlled by the amplitude and phase
of the planetary waves themselves. For example, the
distribution of diabatic heating in middle latitudes is
strongly modulated by the position of the storm tracks,
being largely associated with latent heat release. If the
oceanic storm track is interrupted by a high amplitude
ridge associated with a blocked flow downstream, one
might expect diabatic heating rates over the storm track
to be anomalously low. Thus Q should not be regarded
as a fixed function of space and time. Indeed Shutts
(1987) has suggested that if one keeps Q fixed then the
magnitude of the thermal response may be underes-
timated because, as described below, the possibility of
thermal equilibration is excluded.
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One such model in which the heating is flow depen-
dent is that of Doos ( 1962) in which Q is parameterized
as a Newtonian process Q = —y(7T — T*). As discussed
in Shutts (1987), T* can be thought of as a radiative—
convective temperature appropriate to a particular
geographical region, and v ~! a time constant dependent
on the nature of the physical processes responsible for
adjustment. T* and v ! are likely to be strongly influ-
enced by the nature of the underlying surface and par-
ticularly the contrast between land and sea. For ex-
ample in winter the vertical temperature profile over
the ocean can rapidly adjust to an equilibrium tem-
perature strongly influenced by the sea-surface tem-
perature (deep convection over a warm ocean can bring
the troposphere close to the saturated adiabat corre-
sponding to the SST). Over land in winter, where the
equilibrium temperature is uniformly low, the adjust-
ment time scale can be very much longer and set pri-
marily by radiative processes. In winter conditions, su-
perimposed on its large-scale meridional gradient, 7*
can be expected to be low over the continents ( North
America and Euroasia), high over the oceans, and so
exhibit a wavy form.

Consider, for example, the case in which the spatial
form of 7* happens to be compatible with a solution
of the unforced/undamped equations of motion (a
stationary free Rossby wave for example). The possi-
bility then exists that 7 can closely approach 7* with
markedly reduced diabatic heating rates. This process
may be called thermal equilibration following Shutts
(1987). The dangers of attributing the thermal response
to a fixed forcing are now apparent for the diabatic
heating computed as a residual in the thermodynamic
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equation may be vanishingly small on the scale of the
stationary Rossby wave and therefore dominated by
noise. Consequently there ought to be little confidence
in the linear solution to fixed forcing when the flow is
near equilibration. The classical picture of thermal
forcing places emphasis on the forced response; instead,
the equilibration viewpoint interprets the Q field as a
measure of the degree to which free-mode form has
been attained.

A parallel difficulty arises in theories of orographic
forcing if the lower boundary condition is linearized
to represent the orographic uplift on a zonal flow im-
pinging on the mountain. As discussed by Saltzman
and Irsch (1972), orographic effects also force flow
around obstacles; in the limiting case where streamlines
and mountain height contours are coincident, the in-
duced vertical velocity is zero. Appropriate nonlinear
boundary conditions which are capable of representing
this limit have been recently studied by Chen and
Trenberth (1987). The analogous diabatic process, that
of thermal equilibration, can occur in thermally forced
problems if Q is allowed to be a function of the flow.
Such a representation of the diabatic heating field, used
in conjunction with a more complete kinematic lower
boundary condition, would reduce the importance of
orographic relative to thermal effects compared to that
implied by the classical linear forced model.

Here, using a three-level quasi-geostrophic hemi-
spheric model at truncation T15, we study thermal

_equilibration in isolation. A development of the S-plane
channel study of Mitchell and Derome (1983) to a
sphere, the mechanism considered by Shutts (1987) is
illustrated with a fully nonlinear model which has many
degrees of freedom. In the present study we adopt, as
prototype free modes, the class of stationary Rossby
waves which form a discrete set determined by model
geometry and the basic state flow field. Such waves rely
for their existence on significant reflection of wave ac-
tivity from the tropics, an assumption that will be tested
numerically in our model.

In section 2 the process of equilibration is introduced
in the context of a linear model of thermal forcing in
which the perturbation streamfunction about a solid
body rotation is sought in response to a diabatic heat
source represented as a Newtonian process Q = —(T
— T*). The spectrum of thermally forced response is
illustrated: if 7* has free mode form, then equilibration
is possible resulting in a large-amplitude response in
phase with 7* and vanishing diabatic heating rates;
the nonequilibrated response is of smaller amplitude,
out of phase with T*, and associated with larger dia-
batic heating rates.

In section 3 the form of possible equilibrated states
is studied by solving analytically for finite amplitude
quasi-geostrophic free modes on a hemisphere. Rossby
wave solutions can be readily found if the axi-sym-
metric component of the flow is such that the function
A = dq/dy, where g is the potential vorticity and ¢ is
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the streamfunction, only depends on height. Scatter
diagrams of ¢ against ¥ computed from Northern
Hemisphere ECMWEF fields are presented which indeed
suggest that the extratropical flow is close to free-mode
form with linear (g, ) relationships and therefore ex-
pandable in terms of the class of stationary, free Rossby
waves. ' , :

In section 4 equilibration toward these solutions is
studied in a three-level quasi-geostrophic hemispheric
model forced by a diabatic heating Q = — (T — T*)
and spun down by Ekman friction at the ground. These
experiments are highly idealized with no attempt to
simulate observed flows. Our purpose here is to show
that if 7* is chosen to have free-mode form then equil-
ibration toward 7™ readily occurs provided that the
vertical structure of the wave is consistent with zero
pressure perturbation at the surface. The thermally
equilibrated wave, characterized by vertical phase lines,
zero surface winds and vanishingly small diabatic

- heating rates, is contrasted with the more familiar non-

equilibrated response. Interestingly the anomaly fields,
the difference between equilibrated and nonequili-
brated responses, have a characteristic pattern which
has the appearance of Rossby wave trains. Finally,
equilibration experiments in the presence of a band of
tropical easterlies of uniform potential vorticity are
carried out and it is shown that their presence need
not lead to a significant reduction of wave amplitudes
in the middle latitudes of the model.

In section 5 implications of the study are discussed
for our understanding of the Northern Hemisphere
wintertime long-wave pattern, its anomalies and pre-
diction. In. particular we speculate on the possibility
that equilibration toward free-mode states may be a
controlling influence in the evolution of the atmo-
sphere.

2. Linear theory

The thermal equilibration mechanism is introduced
in the context of a three-level quasi-geostrophic spher-
ical, hemispheric model. The flow is linearized about
a zonal flow in solid body rotation which varies in the
vertical. The model is forced by an entropy source term
Q, where Q is parameterized as a Newtonian process.
The linear model will be used to interpret the numerical
results of section 4.

Standard quasi-geostrophic equations are used, ex-
pressed in spherical coordinates for a dry atmosphere
using & = In(py/p) as the height coordinate where py

‘is the constant average surface pressure. The nondi-

mensional potential vorticity equation is

% _God (psQ
a T I D p*ah( S )

(1)

where the time and length scales are the inverse of the
rotation frequency Q! and the radius of the earth a,
respectively,
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is the potential vorticity and ¢ is the streamfunction,
Dx = P/Do
Gy = sinw /4
S= R(%z};—o + xTo) / (foQa?), the static stability
Q = (rate of heating in K s™') X R/(foQ2%a?)

and fy, T, R, « have their usual meanings. It should
be noted that, as is required for energetic consistency,
we assume here that the Coriolis parameter is constant
in the stretching contribution to the potential vorticity.

Stationary perturbations are sought to an atmo-
sphere rotating such that the angular velocity of rota-
tion is a function of height alone:

v=v+y, ¢¥=—X(h)sind

implying a zonal flow

(2)

#(8, h) = —cosf W = X(h) cosf
u

where # is the latitude and p = sinf. Substituting the
expression for the streamfunction Eq. (2) into Eq. (1)
and neglecting the products of primed quantities, J(y/,
q)," yields

7 d gy = (2L %%

J(xb,q>+1(¢,q)—x(aA > a@)
~God (pQ
S

where X is the longitude. If ¢’ and Q are chosen to be
of the form

¥ = Re{F(h)P,"(n)e"™}
Q = Re{ Qs (M) P (n)e™}

where P,”(u) is the normalized associated Legendre
function, then the complex function for the vertical
structure F(h) is given by

(4a)
(4b)

Go 9 (ps9F)

e 6h(S 6h) [A(R) + n(n+ 1)]F
_ Go i D104
*ime*ah( S ) (52)

! It should be mentioned that certain-finite amplitude-forced so-
lutions of Eq. 3 can be found in which J(y’, ¢’) vanishes identically
(see Derome 1984 provided that the forcing is monochromatic and
of appropriate scale.
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where

dqg _ cosf dq
dy u du
is set by the form of zonal flow.

As discussed in detail by Butchart et al. (1989), Eq.
(5) has the form of a Schrodinger equation in which
the role of the “potential function™ is played by A. It
relates the vertical structure of the planetary wave ex-
cited by the source on the rhs to its horizontal structure.
Another persective from which to view Eq. (5) is pro-
vided by the classical studies of baroclinic instability
of Eady (1949) and Green (1960). In the case when
Oy = 0, it is closely related to the eigenfunction equa-
tion for neutral modes of the baroclinic instability
problem posed by #(z).

For the form of zonal flow about which we have
chosen to linearize [ Eq. (2)] A only depends on X and
thus is a function solely of height, and so separable
solutions can be found. Shutts (1978) obtains solutions
to the continuously stratified problem [Eq. (5)] for
simple choices of X(/#) with O a prescribed and fixed
function of space. Here, however, Q is represented as
a Newtonian heating law of the form

Q = —y(T — T*) X R/(fo@*a®) (6),

where T* = A(h)P,"¢™ is the equilibrium temper-
ature field, to be specified,
oY

= — 2‘
T aha Qfo/R

A(h) = (5b)

in Kelvin, and v ! is a time constant in seconds. Con-

ventionally, Q is specified a priori whereas in this for-
mulation only 7* is specified. Consequently, the heat-
ing is no longer independent of the flow but is a strong
function of it.

Rather than considering the continuously stratified
problem, a vertical discretization of Eq. (5) is chosen
which is identical to the three-level quasi-geostrophic
numerical model used in section 4 and described in
the Appendix. The vertical structure of the wave re-
sponse F'( /) is found for a given A(#) and T* by solving
Eqgs. (5) and (6). The boundary condition applied at
the top of the model is w = 0 which is only appropriate
for waves trapped in the troposphere. For ultralong
waves in winter conditions in which the 7 of the hor-
izontal P,” structure is less than 4, this boundary con-
dition is not appropriate since such waves are not
trapped and energy is propagated into the stratosphere
(for example, see Shutts 1978). Therefore, to be con-
sistent with our chosen top boundary condition, we
will only consider those waves with # = 4. The bottom
boundary condition invokes an Ekman layer w = €V3,,
where ; is the extrapolated streamfunction at the sur-
face. There is no topography.

Our main objective is to illustrate how the wave re-
sponse varies as the meridional structure of 7*, set by
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n, changes (or equivalently, for fixed 7*, as the zonal
wind changes). We have chosen a T* with m = 3 and
zero phase tilt in the vertical with amplitudes of 5 K
at both thermodynamic levels of the model, a radiative—
convective relaxation time scale of y ! = 10 days and
an Ekman friction spindown time of 3.75 days. The
zonal flow is a solid body rotation of strength 4.8, 19.9'
and 37.3 m s™! (at the equator) at the three dynamic
levels. The corresponding A at level 1 to 3 are 227,
—105 and —134 in nondimensional units (5.58
X 1072m™2 -2.58 X 1072 m™2, —3.29 X 10712 m 2
in dimensional units), the minimum at the upper level
being consistent with the data given by Derome (1984)
and the data presented in section 3.

If A is constant everywhere, for example when
= X cosf, ¢ = « sinf with X and « are constant, then
thermal forcing can only excite internal modes. Indeed
in thermally forced planetary wave theory attention is
more often than not focused on planetary-scale baro-
clinic modes (wavenumber one, two and three) since
it is only on the largest scales that the thermal response
to fixed forcing is significant [ m divides the rhs of Eq.
(5)]. Here, however, we emphasize the pseudo-baro-
tropic response (no sign-changes in the vertical ) pos-
sible when A is a function of height. Observations—
see section 3—show that A is a strong function of
height; in this case thermal forcing can and will excite
the pseudobarotropic mode.

The solution of Eq. (5) (vertically discretized at three
levels) as n varies is given in Table 1. When n < 6, i.c.
the scale of the wave is larger than that of the stationary
free Rossby wave, then the height field at level 1 is
upstream of 7%*; the wave tilts eastward corresponding
to heat transport from pole to equator by the wave.
There is evidence of equatorward heat transport in the
summer of the Northern Hemisphere (Eliassen 1958)
when the ultralong waves (with small #) are trapped
by easterlies in the stratosphere. When #n > 6 we have

TABLE 1. Amplitudes and phases of wave responses
to forcing W(T* ~ T), T* = S K X P2e™,

v T*~T T

n Level (dam, °) (K, °) (K, °)
4 3 (3.4, 42°)

2 (1.4, 31°) (4.3, 347°) (1.3, 49°)
: 1 (0.8, 261°) (4.3, 347°) (1.3, 50°)
5 3 (5.1,24°)

2 (2.6, 17°) (3.7, 347°) (1.6, 31°)

1 (0.6, 298°) (3.8, 347°) (1.6, 32°)
6 3 (20, 0°)

2 (12, 0°) 0, 0°) (5,0°)

1 4,0°) 0, 0°) (5,0°)
7 3 (7.5, 171°)

2 (5.0, 179°) (6.6, 354°) (1.7, 156°)

1 (2.8, 204°) (6.6, 354°) (1.7, 154°)
8 3 (3.1, 154°)

2 (2.1, 169°) (5.5,354°) T (0.7, 126°)

1 (1.6, 204°) (5.4, 353°) (0.8, 121°)
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the more familiar response in which the wave is down-
stream of 7* and tilts westward corresponding to heat
transport from equator to pole. This downstream re-
sponse will be illustrated with our spectral model in
section 4. In the conventional linear model with fixed
forcing, the prescribed thermal forcing at the various
levels are in phase. This agrees with the forcing — (T
— T*)shown in Table 1, except for negligible difference
at n = 8. However, here the forcing —y(7T — T*) is
found as part of the solution and is not prescribed.

The eastward and westward tilting regimes are sep-
arated by the interesting case of n = 6 corresponding
to the free stationary Rossby wave. If n = 6, T = T*
and the height field is in phase with 7*. The wave is
“locked” onto the T* pattern and the heating rate re-
duced to zero. For the particular choice of # and T*
chosen here, the (linearly extrapolated) surface
streamfunction also vanishes corresponding to zero
surface wind. The wave amplitude is at its maximum
and the phase lines are vertical, implying no heat
transport. This special response can be called the equil-
ibrated response (because of the switching off of the
forcing), or the resonant response (because it corre-
sponds to the excitation of the free stationary wave
with the largest possible amplitude set by 7*). Atten- -
tion should be drawn to the following two points in
regards to equilibration / resonance. First, both sides of
Eq. (5) vanish but finite values are obtained for F set
by the amplitude of 7*. This should be contrasted with
conventional thermally forced linear models in which
the forcing on the rhs of Eq. (5) is fixed; then the am-
plitude of F is infinite at resonance and therefore in-
determinate. The sensitivity of the conventional linear
model close to resonance is often removed by invoking
dissipative processes. Second, the vanishing of the rhs
at T approaches T* removes the dependence of the
response on m and X, see Eq. (5). This suggests that
at equilibration the same equation is applicable to dif-
ferent wavenumbers m and, furthermore, that the re-
strictive form of the zonal velocity (solid body rotation)
adopted in the linear model can be relaxed. It will be
shown in the next section that this is indeed the case
and, furthermore, that the possible equilibrated states
are free modes of the nonlinear quasi-geostrophic po-
tential vorticity equation.

When Ekman bottom friction is not applied, the
phase lines are vertical except for discontinuous
changes of 180°. The equilibrated response described
above, however, remains unaffected since the asso-
ciated surface winds vanish. However, as will be dis-
cussed in section 4, surface friction is vital in allowing
the steady solution to be sustained in our numerical
integrations by constraining the barotropic component
of the response. There are other ways of constraining
the barotropic component but our choice of vanishing.
surface winds (and hence Ekman fluxes) seems broadly
consistent with the omission of explicit or parameter-
ized eddy flux divergences in our forcing Q.
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In this section, it has been suggested that the plan-
etary wave response to thermal forcing ranges from the
equilibrated regime at resonance with vertical phase
lines to westward and eastward tilting regimes on either
side of resonance. It is possible that the atmosphere
ranges between these regimes, on a radiative-convec-
tive equilibrium timescale as adjustments of the zonal
wind and the form of T*, move the response on and
off resonance. This aspect is further investigated with
our spectral model in section 4.

3. Finite amplitude free modes on a sphere

In the linecar model of section 2 we saw that if 7*
has a form compatible with a stationary free Rossby
wave—i.e., it is a solution of the homogeneous problem
[Eq. (5) with the rhs set to zero], then equilibration
towards T* is possible. In linear theory analytical pro-
gress is made possible by linearizing about an atmo-
sphere in solid body rotation in which # oc cos(lat).
More generally, however, we are interested in all classes
of solution of the unforced/undamped equations of
motion, v+ Vq = 0. There are two broad categories of
such free-modes amenable to analytical study: the class
of Rossby waves and the class of modons. Recently
modons have been proposed as prototypes for atmo-
spheric blocking (see for example McWilliams 1980;
Haines and Marshall 1987; Verkley 1987; Butchart,
Haines and Marshall 1989) and are characterized by

the function A taking on different values on open and

closed streamlines at upper levels in the troposphere.
Here, however, to illustrate the equilibration mecha-
nism, we will focus attention on the class of free Rossby
waves in which A is only a function of height. In the
construction of such solutions it is unnecessary to ne-
glect any higher-order terms; all that must be assumed
is that there be a linear functional relationship between
g and ¢ at each level in the atmosphere:—see for ex-
ample Derome (1984) or White (1986 ) and section 3b.

a. Stationary free Rossby waves

Solutions are sought to the nonlinear equation

JW,q)=0 (7)
of the form
y=9¢+y, ¢ =F(h) T 4.P"e™ (8a)
m+0
where
¥ =q/A (8b)
is an axisymmetric flow and
V'=q/A (8c)

the departure from it. It can be easily seen that the sum
of Eq. (8b) and (8¢) satisfies Eq. (7) as long as A is a
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function of height only; each wavy component has the
same vertical structure and the same » of the normal-
ized associated Legendre function. It follows from this
form of ¢’ that Eq. (8¢) reduces to

o o (1208

Do OB\ S Oh

) —-[AR)+n(n+ 1)]F=0, (9)
which is Eq. (5) with the rhs set to zero.

It can be immediately seen that since F is a function
of  only, A must also be a function of / only, consistent
with our assumption. Solutions can be found by either
specifying the integer » and the vertical structure F,
thus defining A, or specifying A and solving the eigen-
value problem in F with » as the eigenvalue. We further
note that the vertical structure of the waves should be -
chosen in such a way that the extrapolated value at the
surface is zero since, otherwise, Ekman - friction will
move the flow off resonance. In the limiting case of F
having the form (1, 1,.1), i.e., independent of 4, then
A and # are also independent of /4 and the system is
barotropic. However, such barotropic Rossby waves
cannot be locally excited because diabatic forcing has
no projection onto the barotropic mode. It should be
remembered, however, that in the real atmosphere A
varies with height and the remote response to thermal
forcing can be equivalent barotropic, as in Hoskins
and Karoly (1981).

Equation (8b) for the zonal flow can be written as

@i(&é’é

-
V¢+p*ah S dn

) - Ay =-2u  (10)
The particular integral is Fsg(h)u (note u = P,%(n)
and V2u = —2u). It should be noted that, | Fgz|, the
magnitude of the solid body rotation, increases as n
decreases since a strong westerly zonal flow is needed
to bring to rest fast-propagating free Rossby waves of
very large scale. Since Eq. (10) with the rhs set to zero
is identical to Eq. 9, the complementary function for
Eq. (10) is Ao F(h)P,°, where A is an arbitrary con-
stant; thus ¥ = Fggu + AoFP,0. In fact, the P,° com-
ponent could be incorporated into ¥’ by allowing m
= 0 in the definition Eq. (8a). The zonal flow now
consists of the solid body rotation together with the
P,? component whose amplitude can be adjusted ar-
bitrarily. In this way the necessity to adopt the solid-
body zonal flow of the linear problem is overcome.
Moreover the wavy components ¢’ also have arbitrary
amplitudes and phases and a rich variety of solutions
can be constructed.

To illustrate the possible complexity of such free-
mode configurations, Fig. 1 shows one such solution
for a three-level discretization of Egs. (9) and (10).
This planetary wave will be thermally excited in section
4. We choose n = 8 and the vertical structure of the
waves to be (1, 3, 5). A takes the value of 197, —135,
and —164 in nondimensional units (4.77 X 10712 m 2,
—3.32X 1072 m ™2, —4.03 X 107> m 2 in dimensional
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TABLE 2. Components of a free mode for n = 8.

Amplitude at level Phase in wave
1 to 3 (dam) space (deg)
Py 0.85, 2.55, 4.3 166
P 3.75, 11.25, 18.75 37
Py 1.96, 5.89, 9.8 129

units) at levels 1 to 3, broadly consistent with the data
(Figs. 2 and 3) presented in the next section. The con-
tribution of the particular integral to the zonal flow is
the solid body rotation whose velocities at the equator
are 1.5, 10.7, and 22.7 m s ™! at levels 1 to 3. For sim-
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plicity the amplitude of Pg° has been set to zero and
therefore the flow consists of a superposition of solid-
body rotation and wavy components‘only. The wavy
components are Pg!, Pg®, Py> whose amplitudes and
phases are given in Table 2. Figure la shows the
streamfunction at 264 mb with wavenumbers 3 and 5
dominating at high and middle latitudes respectively,
Fig. 1b the temperature field at 344 mb, and Fig. 1c
the wavy component of 7*. The troughs of wavenum-
ber 3 are regions of low 7*, which can be thought of
as characterizing the continents; the ridges are regions
of high T* characterizing the oceans in winter seasons.
The maximum temperature difference between “con-
tinents” and “oceans” along a latitude circle, 13.7 K,

344 mb
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FIG. 1. (a) Streamfunction of the free mode (see Table 2) with n
= 8 at 264 mb. Contour interval 15 decameters; (b) 7* of the quasi-
free mode at 344 mb. Contour interval 5 K; (¢) wavy component
of T* at 587 mb. Contour interval 1 K.
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is found at 60°N. There are clear regions of strong
diffluence and confluence which are not dissimilar to
observed flow configurations.

b. Observations of A

At first sight it might seem that a zonal flow satisfying
Eq. (10), implicitly assuming that A = A(4), places
undue restrictions on the form of the zonal flow. How-
ever, there is observational evidence that the time-mean
flow away from surface boundary layers is only a small
departure from free-mode form and, moreover, is close
to free modes in which the streamfunction is linearly
related to the potential vorticity at each level in the
atmosphere. Derome (1984) draws attention to this
remarkable fact and presents supporting observations
from the zonal-average monthly mean flow during
January 1979.

300 mb —= 25 m/s

90°W |1 $3190°E

| 90°E
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In view of the importance of A to the theory of finite-
amplitude free modes, the form of which is crucial to
the ideas being explored in this study, Fig. 2 shows
time-mean streamfunction and potential vorticity fields
at 300, 500 and 700 mb over the Northern Hemisphere
for the period December, January and February of
1986-87. There is a marked tendency for the ¥ con-
tours to run parallel to the g contours. Even more re-
markable are the functional relationships revealed in
Fig. 3 at 300 mb, 500 mb and 700 mb obtained by
plotting scatter diagrams of g against y at each 5° X 5°
grid point over the hemisphere poleward of 15°N. The
scatter diagram is a useful tool to determine the degree
of freeness of the flow. The area of scatter is a measure
of the advection of g and hence the magnitude of J(y,
q). In free flow, g = q(¥), J(¥, q) = 0 and the scatter
collapses to a curve. However, in practice the functional

500 mb

— 25 m/s

90°W [+ 4 90°E

FG. 2. The quasi-geostrophic potential vorticity (dotted lines) and
streamfunction (continuous lines) for the nondivergent flow on the
(a) 300 mb, (b) 500 mb and (¢) 700 mb isobaric surfaces. Wind
arrows are superimposed. Seasonal mean quantities are plotted—the
December-February 1986/87 time mean. The unit of g is 10~%s™!
and the unit for  is 107 m?2 s~". Details of the method of computation
are given in Butchart (1989).
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FIG. 3. Scatter diagrams of ¢ plotted against y at 5° X 5° latitude~

longitude grid points over the Northern Hemisphere north of 15°

for the December; January and February time-mean fields presented

in Fig. 2: (a) 300 mb, (b) 500 mb, and (c) 700 mb. The unit for q

is 107 s and the umt for ¢ is 10" m?s™.

relationship between g and  is blurred because the
flow departs from free mode form. The degree of de-
parture can be measured by the quantity, I, which is
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the ratio of the scatter area to the area of the smallest
rectangle with sides parallel to the g and Y axes cir-
cumscribing the scatter (see Read et al. 1986). This
quantity, /, can also be interpreted as the area average
of the angle between y and ¢ contours. It is evident
that in a perfect free mode, the angle and I vanish. In
Fig. 3, the degree of scatter is small allowing a func-
tional relationship between g and ¥ to be defined; the
implied angles between the ¢ and ¢ contours are ap-
proximately 3, 7 and 15 degrees for the 300, 500 and
700 mb surfaces. It should be emphasized that in Fig.
2, g and ¢ depart markedly from latitude circles and
so the smallness of the scatter in Fig. 3 cannot be at-
tributed to the dominance of the zonal flow.

A further remarkable fact is that the implied (g, ¥)
curve is close to being linear. The reasons why the flow
should favour linear (g, ¢) relationships are not clear
but the empirical evidence presented in Fig. 3 provide
a strong motivation for our interest in the class of finite
amplitude stationary Rossby waves. It should be em-
phasized, however, that other classes of free-mode so-
lution can be found (numerically) in the case when A
changes smoothly along an isobaric surface—see for
example Branstator and Opseegh (1989). Indeed close
inspection of Fig. 3 reveals departures from linearity
particularly at low latitudes. However, the existence of
further classes of free-mode solution will make the
possibility of equilibration more rather than less likely.

4. Numerical illustrations

A three-level hemispheric spectral model at trun-
cation T15 (described in the Appendix) is employed
to thermally excite planetary waves. Diabatic heating
of the form Q = —y(T — T*) is adopted where 7% is
a superposition of the stationary, free, finite amplitude
Rossby waves studied in section 3. To simplify our
discussion and present the equilibration mechanism in
its purest form, all baroclinically unstable modes are
suppressed by damping unforced wave modes with m
> 5 on a time scale of Y2 day. We shall have a particular
interest in the excitation of planetary waves which have
an equivalent barotropic vertical structure (no sign
changes in the vertical).

Numerical experiments show that free modes can
be readily excited and maintained (both grown from
zero amplitude on an axisymmetric flow or maintained

-close to an initial free configuration ) but only.if a con-

straint is applied on the barotropic mode (or equiva-
lently the surface winds). We have chosen to relax the
(extrapolated ) surface wind to zero by introducing a

_surface Ekman layer eV*y,; where Y, is the surface pres-

sure perturbation and ¢ is an Ekman spindown time.
The vertical structure of the planetary wave is chosen
sO that y; is zero. This is the only flow consistent with
a solution of the unforced, undamped equations of
motion; not only must 7 = T*, but also ¥, = 0 to
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ensure that frictionally driven Ekman layers at the sur-
face are inactive. Thus as the planetary wave equili-
brates toward T* switching off the internal diabatic
sources, the surface winds also spin down reducing to
zero the mechanically driven vorticity sources at the
surface.

If a constraint on the barotropic mode is not applied
then it is not possible to equilibrate toward or maintain
equivalent barotropic free-mode states because the
Newtonian thermal forcing can only constrain the dif-
ferences between the response at the three levels, not
the absolute values.

Before going on to present results from our numer-
ical experiments, it should be mentioned that the so-
lution constructed in section 3 is not a perfect free
mode of our numerical model and must be adjusted
in two ways. First, the solid-body rotation represented
by ¥ = sinf = P,°(sinf) cannot be exactly represented
in the model since the zonal flow is required to be zero
at the equator. Thus our hemispheric model does not
carry a P,° component (see Appendix ). Instead, P,° is
approximated by a linear combination of P,° and P,°
giving a jet at about 30°N, not unlike the observed
wind pattern. This zonal configuration is, in fact, more
realistic than a solid-body rotation which has a westerly
maximum at the equator. It does not, however, have
a band of equatorial easterlies; but see section 4c. Sec-
ond, the vertical structure of the zonal flow, being dif-
ferent from that of the wavy components, does not
extrapolate to zero at the surface. This problem -is
overcome by adjusting the zonal wind at level 1 to
ensure that the extrapolated surface wind is indeed zero.
This amounts to reducing the pole to equator temper-
ature gradient at the lower thermodynamic level. With
these two modifications, the quasi-free mode has a
zonal jet at 30°N with speeds of 3.8, 11.4 and 24.1 m
s~! at the three levels and pole to equator temperature
differences of 31.4 K and 40.9 K at the lower and upper
thermodynamic levels respectively. The T* field of the
quasi-free mode is shown in Fig. 1b and is hardly dis-
tinguishable from the T of the free mode (not shown
here) corresponding to Fig. 1a.

a. Equilibration at resonance

The model is initialized with an axisymmetric zonal
flow and is thermally forced towards the quasi-free
mode. The relaxation timescale for the wavy compo-
nents of 7* is 7 days with an Ekman spindown time
of 3.75 days. A numerical viscosity is applied to the
vorticity on a timescale of 8 days for the shortest waves
in the model (see Appendix). At day 40, the model
has settled to a quasi-equilibrated state approaching
the quasi-free mode, but with somewhat reduced am-
plitudes. Figure 4a shows T at 344 mb, Fig. 4b (7T*-
T') at 344 mb and Fig. 4c¢ the wavy component of 7.
The essential characteristics of the free mode of Fig. 1
are in evidence: domination by wavenumber 3 and 5
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at high and middle latitudes respectively, the pattern
of ridges and troughs, nearly vertical phase lines, a weak
surface pressure pattern (the maximum amplitude is
3 mb), and low diabatic heating rates (on average less
than 0.5 K day™'). The maximum phase-shift of T
relative to 7* is only 12 degrees of longitude. Scatter
plots, Fig. 4d show an excellent functional relationship
between g and ¥ at levels 2 and 3 but with some bending
of the curves; at level 1 there is somewhat more scatter
but the flow is weak here, and the potential vorticity
gradients small resulting in small tendencies. It is note-
worthy that the thermal equilibration mechanism can
operate successfully even though the zonal flow departs
markedly from solid body form as the equator is ap-
proached.

b. The forced, off-resonant response

The nonequilibrated response can be illustrated by
strengthening the zonal wind beyond that which can
support the stationary, free Rossby wave whilst keeping
the wavy components of 7* unchanged (n = 8). Ac-
cordingly, the strengthened zonal flow consists of PP
and P,° with a jet at 30°N of strength 6, 18, 32 m s~
at levels 1 to 3, 2.2, 6.6 and 7.9 m s™' stronger, re-
spectively, than those of the quasi-free mode. This zonal
flow is in fact appropriate for the free solution described
in section 3 with n = 7 and vertical structure (1, 3, 5).
The steady response is shown in Figs. 5a and 5b. The
strong zonal flow has indeed blown the waves down-
stream: troughs in T now appear downstream of
troughs in T* rather than in phase with them. Fur-
thermore, the wave amplitude has markedly decreased
and the heating rate increased relative to the equili-
brated response. In fact the flow now has all the hall-
marks of a thermally forced response with an enhanced
surface pressure pattern, and the planetary waves tilting
westward with height. Recalling that n = 7 is the res-
onant point for this zonal flow, the linear model of
section 2 suggests that the wave response corresponding
to a T* with n = 8 would be downstream and tilting
westward, in accord with the numerical result. The re-
sponse on the long-wavelength side of the resonant
point, found in section 2 with the lower level ¥ up-
stream of 7* and phase lines tilting eastward, can also
be reproduced by the numerical model when the » of
T* is set to be less than 8 and the zonal flow of section
4a is adopted (i.e., the resonant point is # = 8). In this
case the zonal wind is too weak to allow equilibration.

It is worth noting in passing that 7*-T (Fig. 5b)
which could also be thought of as an anomaly field,
might be mistaken for a wave train propagating from
the tropics. As shown by Grose and Hoskins (1979)
and Hoskins and Karoly (1981), the two-dimensional
dispersion of Rossby waves away from a localized
source have the form of wave-trains propagating along
great circles (for a solid-body zonal flow). Here, of
course, this characteristic pattern is not associated in
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FIG. 4. (a) T at 344 mb near equilibration on day 40. Contour interval 5§ K; (b) 7* — T at 344 mb near equilibration on day 40. Contour
interval 1 K; (¢) wavy component of T at 587 mb; (d) scatter diagrams of ¢ against ¥ at the three levels of the model. Units same as
Fig. 3. ’
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FIG. 5. As in Fig. 4a and 4b but for the off-resonant
response on day 150.

any way in our model with wave propagation but is
merely the difference between the forced and equili-
brated responses. It is significant, however, that our
mechanism can result in anomaly patterns which are
reminiscent of Rossby wave trains.

¢. Equilibration in the presence of equatorial easterlies

The relevance of the foregoing calculations to the
atmosphere depends on whether or not stationary
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quasi-free waves can persist in realistic zonal flows. In
fact, as reviewed, for example by Held (1983) and
Webster (1983 ), the existence of finite amplitude sta-
tionary free-modes depends on significant reflection of
Rossby waves from tropical easterlies. Any source of
Rossby waves in middle latitudes will, according to
linear theory, produce rays which are eventually at-
tracted toward the zero-wind line separating equatorial
easterlies and middle latitude westerlies. Linear theory
suggests (Charney 1969) an effective barrier between
middle latitudes and-the tropics; modes will either be
reflected or absorbed at some latitude poleward of the
equator. If they are efficiently absorbed then large am-
plitude-free waves cannot persist in middle latitudes.

The literature on the role of critical lines is extensive
but equivocal as to their reflective/absorptive prop-
erties [see for example Haynes and McIntyre (1987)
and Killworth and McIntyre (1985)]. The observa-
tional evidence for significant absorption of wave ac-
tivity in the tropics is largely based on diagnostics of
the divergence of the Eliassen-Palm flux (see for ex-
ample Edmon et al. 1980) but the steady free waves,
which are the focus of our attention here, cannot have
a signature in such statistics since they are not asso-
ciated with any potential vorticity fluxes.

In view of the foregoing uncertainties we have taken
a direct approach and attempted to demonstrate, or
otherwise, that resonant excitation of free-waves can
occur in middle latitudes in the presence of critical
lines. Accordingly the equilibration experiments were
repeated in the presence of a belt of tropical easterlies.
Adjustments both to the zonal flow and T* are made
as follows. For the free mode shown in Fig. 1, with n
= §, wave amplitudes fall to zero near 24°N. The zonal
flow south of this latitude is modified so as to create a
broad band of easterlies which reach magnitudes of
6,4.5 and 2.2 m s~! at the equator at the lower, middle,
and upper levels respectively of the model. The nu-
merical model is modified to carry the P,° component
allowing nonzero zonal flow at the equator. The re-
sulting winds happened to be configured in such a way
that, as is strikingly evident in the observations—see,
for example Fig. 4 of Sardeshmukh and Hoskins
(1985)—the potential vorticity gradient in the equa-
torial band is very close to zero at the upper levels of
the model. The easterly band is sufficiently broad that
the waves cannot “tunnel through” to the equator. Care
is taken to ensure that the wind field in middle latitudes
is kept close to the solid body rotation form of Fig. 1.
In addition to these adjustments of the zonal flow, the
wavy components of 7* are chosen so that south of
24°N the wave amplitudes superpose to zero and re-
main unchanged north of this latitude. These modifi-
cations ensure that 7* and the zonal flow poleward of
24°N are indistinguishable from that of Fig. 1, but now
a broad band of easterlies exist with almost uniform
potential vorticity. Figure 6a shows the wavy compo-
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FIG. 6. (a) Wavy component of 7* at 587 mb and (b) wavy
component of T at 587 mb in the presence of tropical easterlies.

nent of 7* and should be compared with Fig. 1c. Be-
cause 7* is zonal south of 24°N, any waves existing
in the tropics will be thermally damped on a 7-day
time scale. Furthermore, the enstrophy damping time
scale in the model (see Appendix) was set so that the
waves of the smallest meridional scale (n = 15) were
damped on a %2 day time scale. This was thought to be
sufficient to dissipate any equatorially propagating wave
packets which, according to linear theory, are made
up of waves which have increasingly rich meridional
structure as the critical line is approached.
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Figure 6b shows the thermal response at level one
of the model and should be compared to Fig. 4c. We
see that the amplitude of T in middle latitudes has
diminished somewhat in the easterly wind case, but
not to any significant extent. Evidently dissipation in
the tropical easterlies of the model is not efficient
enough to significantly modify the middle-latitude re-
sponse. Furthermore, in the belt of easterlies, wave
amplitudes are very small and there is no evidence of
propagation to and reflection from the equatorial wall.

It appears then that equilibration can readily occur
in the presence of a critical line embedded in a region
where large-scale gradients of potential vorticity are
anomalously weak. Consistent with all critical layer
theory (for example, see McIntyre 1982), in our nu-
merical experiment a belt of easterlies of uniform po-
tential vorticity acts much like an equatorial wall re-
flecting significant fractions of wave energy incident

. from middle latitudes. Inspection of observed potential

vorticity fields at upper levels in the tropics does indeed
indicate that there are vast areas in which it is homog-
enized. However, localized regions of tropical westerlies
do also exist, corresponding to enhanced meridional
potential vorticity gradients which presumably act to
“duct” wave energy equatorward. Nevertheless, given
that planetary waves can amplify on the relatively short
radiative—convective time scale, it seems very likely
that in appropriate circumstances resonant excitation
of free waves can take place provided that the ducting
of energy through the tropical westerlies is not too large.

" d. Oscillation of wave-number three

The numerical experiments described above illus-
trate the two extremes in the spectrum of thermal re-
sponse. It can be envisaged that the thermally forced

" component of the planetary wave pattern will exhibit

both responses, but the degree to which either limit is -
achieved will depend on the extent to which 7* projects
onto stationary, free modes. This spectrum of response
is well illustrated in the following experiment in which
wavenumber three is thermally excited and subse-
quently proceeds to spontaneously oscillate between
equilibrated and forced responses, the period of the
oscillation being set by the radiative-convective relax-
ation time scale. The zonal flow appropriate to the free
solution in section 3 for n = 6 and vertical structure
(1, 3, 5) is strengthened by 3 m s™! at each model level
to give a jet at 30°N of strength 8, 24, and 42 m s™".
The model is initialized with T set equal to a 7* given
by Ps* (shown in Fig. 7) corresponding to n = 6. The
parameters of the model are as before except that now
the thermal relaxation timescale is 10 days. After some
initial adjustment wavenumber 3 begins to oscillate
between forced and equilibrated states. By day 50 it is
close to equilibration; from Figs. 8a-c it can be seen
that the surface pressure pattern is featureless, the phase
lines vertical, 7 almost in phase with 7* and the dia-
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FIG. 7. T* of the quasi-frec mode at 344 mb for n = 6.
Contour interval 5 K.

batic heating rates very low (in general less than 0.2 K
d~!). However, 10 days later, Figs. 8d-f, the wave has
evolved into a more familiar state: T is now down-
stream of 7*, there is a strong surface pressure pattern,
large phase shifts in the vertical (nearly 180° at high
latitudes) and heating rates more than twice that at
day 50. Wavenumber three continues to evolve until
by day 75 it is near to equilibration again. Evidently a
steady state cannot be achieved because the 7* towards
which the waves are relaxing does not project suffi-
ciently onto the free modes of the model.

It appears, then, that a thermal equilibration mech-
anism is capable of producing internal variability on
radiative-convective time scales: the radiative “spring”
pulls T back toward 7* on ™! time scales only for it
to be blown downstream again by the strong westerlies.

5. Discussion

Diagnostic studies using scatter diagram techniques
carried out specifically with free-mode ideas in mind
(see for example Illari and Marshall 1984; Read, Rhines
and White 1986; Butchart, Haines and Marshall 1989;
and section 3 of the present study) show that there is
a pronounced tendency for potential vorticity contours
and streamlines to run parallel to one another. Such
studies are revealing that much of the flow away from
boundary layers is close to finite-amplitude free-mode
behavior. A mechanism has been proposed, thermal
equilibration, that may be an important process relax-
ing the atmosphere toward free-model states. This pos-
sibility has been investigated in a three-level hemi-
spheric model driven by a Newtonian heating in an
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extension to a sphere of the 8-plane channel studies of
Mitchell and Derome (1983): attention has been fo-
cused on the class of finite amplitude Rossby waves. If
a T* is chosen to be compatible with a superposition
of finite amplitude Rossby waves which are stationary
on the hemisphere, then resonance and equilibration
toward 7* is readily achieved provided a constraint
on the surface wind is applied; i.e., that it too equili-
brates to zero. A large amplitude wave can be main-
tained close to 7* with small diabatic heating rates
even in the presence of equatorial easterlies. The more
familiar thermal response can be illustrated by, say,
increasing the zonal wind or suitably changing the form
of T* so that it is no longer compatible with a free
solution. In this case a thermal trough appears down-
stream of the region of maximum cooling with the
planetary waves tilting westward (or simply changing
sign in the vertical), strong surface pressure patterns,
and large diabatic heating rates. This is also illustrated
as a class of downstream small-amplitude response in
a simple linear model in section 2.

Our numerical experiments show that the planetary
wave response can range from the thermally equili-
brated to the forced regime on radiative-convective
relaxation time scales suggesting that equilibration may
be an important mechanism modulating low-frequency
variability in the atmosphere. It should be emphasized,
however, that in the present study global Rossby waves
have been chosen as our free modes only for conve-
nience to illustrate the essence of the idea. It might be
expected that the global equilibration considered here
might occur rather infrequently in the atmosphere. We
suspect that local equilibration may be very much more
common and relevant to, for example, atmospheric
blocking. Indeed longitudinally confined Rossby wave-
free modes can be grown on the sphere by exciting the
appropriate spherical harmonics. Alternatively modon-
like solutions could be candidate free-modes appro-
priate in the blocking context (see, for example,
Pierrchumbert and Malguzzi 1984; Haines and Mar-
shall 1987; Butchart et al. 1989).

Branstator and Opsteegh (1989) have stressed the
importance of the density and distribution of free-mode
states in phase space and consider free states in which
g and Y are nonlinearly related (obtained by a numer-
ical variational approach). They find that there is a
concentration of free-mode states in that part of phase-
space in which the atmosphere resides and that gen-
erally they are tightly clustered. This has important
implications for the present study for it appears that
there may be a multiplicity of free-mode states available
to the atmosphere, many more than contained in the
class of stationary free Rossby waves alone. If this is
the case then it is likely that T* will project strongly
onto this enlarged class of free-mode states and so res-
onant growth of flow patterns close to free-mode form
might then be a ubiquitous feature of the atmosphere.

Our study would also seem to have some relevance
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1000 mb

FiG. 8. The equilibrated (day 50, a; b and c) and off-resonant (day 60, d, e and f) responses of wavenumber 3 with » = 6. (2) and (d):
Streamfunction at 264 mb. Contour interval 15 decameters; (b) and (e): Surface pressure pattern. Contour interval 1 mb; (¢) and (f): T*

— T at 587 mb. Contour interval 1 K.

to the underlying dynamics of weather regimes.. It is
tempting to speculate that the anomalous weather re-
gimes, ATL(#+) and PAC(z), identified by Dole
(1986), may be opposite extremes of a thermal re-
sponse typified by thermally equilibrated and forced
solutions, respectively. For example the PAC(+) pat-
tern (equivalent to the negative phase of the PNA) is
characterized by a large amplitude ridge over the east-
ern Pacific, the trough over the east coast of North
America is upstream of its normal position and the

Aleutian low is markedly weakened. These are all hall-
marks of an equilibrated response. We also note that
systematic errors in medium- and long-range forecasts
are a strong function of flow regime (for example, see
Arpe and Klinker 1986) and seem to be largest when
the planetary wave amplitude is a maximum corre-
sponding to ridging over the oceans. Since equilibration
toward free mode form relies on the simultaneous
“switching off” of the boundary layer physics and in-
ternal diabatic heating, great demands on the physical
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parameterizations are made and so errors in the “phys-
ics” are likely to compromise the ability of the model
to sustain these states. Conversely, the more zonal off-
resonant response, with strong surface winds and fluxes
and large diabatic heating rates may not be so sensitive
to such errors.

Finally it is fascinating to observe that the difference
fields between equilibrated and forced responses com-
puted from our model are very reminiscent of wave
trains propagating along great circles (for example, see
Fig. 5b). Indeed the anomaly patterns over the Pacific
documented by Dole (1986) are the two phases of the
ubiquitous “PNA” pattern. Could it be that the PNA
pattern is in part a consequence of the planetary waves
locally switching between these two thermal states?
Furthermore, errors in the forecast model tend to have

the appearance of wave trains and are often attributed

to Rossby wave propagation triggered by errors in the
tropical heating field. The present study provides an
additional mechanism; the anomaly fields between
equilibrated regimes and the climatology have a similar
characteristic signature.

Acknowledgements. We should like to thank the
Gassiot Grants Committee of the Meteorological Office
whose support made this study possible. We acknowl-
edge numerous conversations with Drs. Glenn Shutts
and Andy White of the Meteorological Office and Keith
Haines of Imperial College.

APPENDIX

The Quasi-geostrophic Hemispheric Model

Standard quasi-geostrophic equations expressed in
spherical polar geometry are used for a dry atmosphere

with 2 = In(py/p) as a height coordinate where p; is
the constant, average surface-pressure. A conventional
level discretization is used with, in our case, two ther-
modynamic levels midway between three kinematic
levels, as shown in Fig. 9.

aT,
a—h" +xTo=293K

has been used in the-definition of the static stability,
S, at both thermodynamic levels. The Jacobian of ¢
and ¢ in the potential vorticity equation, Eq. (1), is
written in spherical coordinates thus

(Ve 1 (U
I, q) = (aﬂq)+ = (a)\q)

where .V = v cosb, U = u cosf, u = sin(lat) and A is
the longitude. .

The horizontal streamfunction fields at each level of
the model are expanded into spherical harmonics of
odd parity for the wave fields and even parity for the
zonal-mean fields:

14
v= Z ulh, OP(n)

. n=2,n even
14 15
v'= 2 2 [¥a(h, 1) cosmi
m=1 n=m+l
n—m odd

+ Y5k, t) sinmN P (1)

where P,™ are the normalized associated Legendre
functions. This mixed parity .formulation is required
in this hemispheric model for the following reason. To
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w =10 at 202 mb
13 at 264 mb
T, at 344 mb

12 at 450 mb
T, at 587 mb
1 at 766 mb
1, at 1000 mb

FIG. 9. Vertical discretization of the spectral model.

ensure zero net cross-equatorial flow, we have chosen
to set # = O at the equator (this can be seen to be
sufficient by considering the zonally averaged u-mo-
mentum equation at the equator where the Coriolis
torque does not vanish in a quasi-geostrophic model).
If 77 is to vanish at the equator, then ¥ must be expanded
in terms of even Legendre polynomials.

Evaluation of divergence terms is accomplished by
the grid-transform technique. A scale-selective viscos-
ity,

. S
[15(15 + 1)])?

where 1! is the damping time scale in days, is applied
to the vorticity equation to dissipate small-scale en-
strophy. The damping timescale is normalized with
respect to waves of the shortest meridional scale in the
model, #n = 15 for the experiments described here.

The model was built in the Department of Physics,
Imperial College, by Drs. Mansbridge and Shutts. For
further details see Shutts (1983).
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