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ABSTRACT

High resolution numerical experiments of a circumpolar current are diagnosed to study how lateral and vertical
transfer of buoyancy by geostrophic eddies balances advection by a meridional circulation driven by surface
wind stresses and buoyancy fluxes. A theory is developed in the framework of the ‘‘residual circulation’’ to
relate the vertical and horizontal stratification set up to the transfer properties of eddies and the patterns of
imposed wind and buoyancy forcing. Simple expressions are found for the depth of penetration, stratification,
baroclinic transport, and residual circulation of the current. Finally, the ideas are applied to the Antarctic
Circumpolar Current (ACC) and yield predictions for how its properties depend on wind and buoyancy forcing.

1. Introduction

In the southern oceans strong meridional gradients in
air–sea buoyancy flux act to create a strong Polar Front
along which the Antarctic Circumpolar Current (ACC)
flows in thermal wind balance with the density gradi-
ents. Westerly winds also drive the ACC eastward and,
through associated Ekman currents, induce an Eulerian
meridional circulation (the Deacon cell) that acts to
overturn isopycnals, enhancing the strong frontal region
(see Fig. 1). The potential energy stored in the front is
released through baroclinic instability, and the ensuing
eddies play a fundamental role in the dynamical and
thermodynamical balance of the ACC (see, e.g.,
McWilliams et al. 1978; Marshall 1981; Johnson and
Bryden 1989; Gille 1997; Phillips and Rintoul 2000;
and many others).

Traditionally, researchers have prescribed a stratifi-
cation and studied the role of eddies spawned from it.
But in collusion with imposed patterns of mechanical
and buoyancy forcing, the eddies can set the stratifi-
cation too. In this paper we argue that the eddies them-
selves are fundamental in setting the stratification—both
in the horizontal and vertical.

In a companion paper, Marshall et al. (2002), we ex-
amined how a balance between eddy transport and sur-
face forcing can set the stratification of a warm lens of
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fluid pumped down from the surface in an idealized
laboratory setting. Here we extend that work to a cir-
cumpolar current. As sketched schematically in Fig. 1,
we suppose that eddies transport buoyancy across the
front releasing potential energy at a rate which balances
its creation by mechanical and thermodynamic forcing
at the surface. The final stratification of the front is then
set by this balance. Thus, while stratification determines
the eddies, the eddies in turn determine the stratification.

We begin by studying a series of numerical experi-
ments that illustrate how a balance between eddies and
surface forcing is established in a circumpolar current.
We do not impose an initial stratification, but rather
examine the stratification set up at equilibrium. The ex-
periments are used to guide the development of a theory
that predicts both the surface stratification of the cir-
cumpolar current and its depth of penetration in terms
of the winds and buoyancy fluxes acting at the surface.
The theory is developed in the framework of the trans-
formed Eulerian mean (TEM: Andrews and McIntyre
1976), which reformulates the conservation equation in
terms of a ‘‘residual circulation’’ that includes the effect
of both mean flow and eddies.

The structure of the paper is as follows. In section 2,
we present a description of the numerical simulations.
In section 3, we develop and interpret simulations in
terms of a simple analytical system that can be solved
to give the stratification. In section 4, we discuss the
ramifications of the theory for the ACC, demonstrating
how surface forcing determines the structure and trans-
port of the current as well as the sense of the residual
circulation. In section 5, we discuss the results and con-
clude.
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FIG. 1. A sketch of the balance that establishes the stratification
of a circumpolar current. The dashed lines represent tilted isopycnals,
the solid curves the streamlines of the mean wind-driven overturning.
The overturning circulation together with differential heating—cool-
ing in the south near Antarctica and warming in the subtropics—act
to overturn isopycnals creating the Polar Front. This front becomes
unstable and the resulting eddy transports balance the surface forcing
establishing a statistically steady state.

FIG. 2. The domain used in our numerical simulations. A rotating
cylinder of fluid of radius R and depth H is forced at the surface by
a wind stress and patterns of heating and cooling. The wind stress
drives a meridional overturning as indicated by the arrows.

TABLE 1. The forcing and diagnostics for the numerical simulations
that have been run. The depths he and strengths Db of the fronts have
been normalized by the depth of the domain, H, and the buoyancy
at the center of the domain, br50, respectively. The first experiment
listed is our reference experiment. For all the experiments R 5 60
and H 5 15 cm with a horizontal and vertical resolution of 1 and
0.5 cm, respectively. In all experiments there is Laplacian diffusion
of temperature and momentum with diffusivities of 1 3 1027 m2 s21

and 5 3 1026 m2 s21, respectively.

t 0

3 1025

(m2 s22)

B0

3 1027

(m2 s23) f (s21) he/H Db/br50

0.48
0.48
0.48
0.84
1.68
3.36
0.16
0.96

2.47
4.91
1.23
2.47
2.47
2.47
2.47
2.47

0.75
0.75
0.75
0.75
0.75
0.75
0.25
1.50

0.23
0.17
0.32
0.28
0.47
0.98
0.20
0.32

5.11
11.0
6.20
6.93
4.36
1.60
4.35
9.78

2. Numerical simulations

a. The experiments

We now describe numerical solutions of a circum-
polar current designed to study the balance between
eddy transport and surface forcing. Because this work
was inspired by laboratory studies (see Marshall et al.
2002), and in subsequent work will be tied to further
laboratory experiments, we set up a current in a cylin-
drical domain of radius R and depth H (see Fig. 2) on
an f plane. Details of the experiments studied here are
given in Table 1. Our domain approximates a polar cap
and allows the realization of a circumpolar current. The
MITgcm (Marshall et al. 1997a,b) was used.

The model resolution is sufficient to represent both
vertical and horizontal structure of the front and eddies
that develop. For a typical front, the horizontal grid size
is roughly one fifth the Rossby deformation radius. This
allows the details of the baroclinic waves and eddies to
be captured accurately. In the vertical, the grid size is
sufficiently small to crudely capture the surface Ekman
layer and more than sufficient to resolve the vertical
stratification of the front.

For simplicity, the bottom is flat and there are no land
masses. While bottom topography is no doubt important
in a detailed model of the ACC (Munk and Palmén
1951), it is ignored here in order to obtain a clear picture
of the balances involved in a symmetric annular region.
Similarly, the ACC is influenced by the interaction of

the circumpolar flow allowed through Drake Passage
and the gyre-like flows in the Atlantic and Pacific. How-
ever, we concur with studies (Gnanadesikan and Hall-
berg 2000; Gent et al. 2001; Tansley and Marshall 2001)
that have shown that it is the circumpolar flow through
Drake Passage and not the Sverdrupian gyre flow that
determines ACC transport. Our model thus only ex-
amines circumpolar flow. The simplicity of our geom-
etry allows us to diagnose the flow in terms of azimuthal
averages; we will refer to the azimuthal direction as
zonal and the radial direction as meridional.

1) PATTERNS OF MECHANICAL AND THERMAL

FORCING

Beginning with a resting homogeneous fluid, we force
at the surface with an azimuthal wind stress that gen-
erates a meridional overturning as sketched in Fig. 2.
We include diffusion of momentum, n, to support Ek-
man layers at both the surface and the bottom. The
surface is forced by a zonal wind stress per unit density,
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FIG. 3. (a) The nondimensional wind stress, t(r), and (b) the surface
buoyancy forcing, B(r), used in the numerical simulations. Multiply-
ing these nondimensional functions by a wind stress scale, t0, and a
buoyancy flux scale, B0, (see Table 1) gives the applied forcing for
a given simulation. The buoyancy forcing vanishes at r 5 r0 with r0/
R 5 0.51.

t(r), which vanishes at r 5 0, R (see Fig. 3). A mean
circulation develops according to Ekman theory (see
Pedlosky 1987) with streamfunction

t
C 5 E (z), (1)Ek 1 2f

and velocities

1 ] ]CEkw(r, z) 5 (rC ), y (r, z) 5 2 , (2)Ekr ]r ]z

where E(z) is a vertical structure function associated
with the mechanically driven circulation and r is the
radius. Outside the Ekman layers, E(z) 5 1 and the flow
is purely vertical, as sketched in Fig. 1. Within the sur-
face Ekman layer there is meridional Ekman transport
of magnitude

t
y 5 . (3)Ek f

There is also a bottom Ekman layer with an equal trans-
port but of opposite sign to the surface. Although the
Ekman transport plays an essential role in the dynamics,
our theory is insensitive to the exact structure within
the Ekman layer.

Once the fluid is spun up, a buoyancy forcing is ap-
plied that heats an exterior ring while cooling at the
center (see Fig. 3). The forcing is chosen so that no net
buoyancy is added to the system.1 A convective ad-

1 In this paper we make no distinction between heat and salinity
fluxes. To simplify our discussion we refer only to temperature and
heat fluxes.

justment scheme is used to eliminate the unstable strat-
ification that forms when the surface is cooled.

2) NUMERICAL SOLUTIONS

In Fig. 4, we illustrate the evolution of a typical nu-
merical circumpolar current; parameter values are those
of our reference experiment (see Table 1). As the heating
begins, a warm ring of fluid forms (see t 5 75—after
75 rotation periods). This fluid is pumped down to depth
and forms a temperature front (as seen in the zonal mean
cross section at t 5 75) with an associated thermal wind
current. The current becomes unstable, and initial small
waves grow rapidly into eddies. As time proceeds, the
front gets warmer and deeper while the eddies grow
larger. The action of the eddies allows the front to spread
across the tank (compare the zonal mean at t 5 150 to
that at t 5 75). Eventually (at t 5 1500) we reach a
quasi-steady state in which a strong, deep front supports
a vigorous field of large eddies. The eddies sweep fluid
across the front, transporting warm water inward and
cooler water outward. This exchange reaches such a
magnitude that it can balance the surface forcing.

In Fig. 5, we plot the time evolution of the temper-
ature anomaly at a point under the heating (r/R 5 2/3)
for all vertical levels in the model. Initially, we see a
rapid rise in temperature as the heating begins. Subse-
quently, as eddies begin to form, the temperature rises
at a lower rate. The lens continues to warm and deepen
while eddies continue to grow. Finally, after the eddy
transport has become sufficiently large, the temperature
levels off to a quasi-steady value.

In Fig. 6, we plot the time and zonal mean of the
quasi-steady temperature anomaly and current. Hori-
zontal variations in the temperature are concentrated in
a front where the buoyancy forcing and the wind-driven
vertical velocity change sign, r 5 r0. The front extends
to roughly half the depth of the fluid, so little variation
in temperature is seen at the bottom. The corresponding
baroclinic zonal flow is a surface trapped current cen-
tered at r 5 r0.

To make theoretical progress we assume that the mean
buoyancy, , is separable and has an exponential profileb
in the vertical:

b 5 M(r) exp(z/h ),e (4)

where M(r) is the horizontal structure and he is the e-
folding depth. In Fig. 7, we plot the zonally averaged,
vertical profiles through the core of the front (r/R 5 0.3
to 0.8) normalized by their surface value. A best fit
exponential curve to the average of the vertical profiles
is also plotted. The curves—a total of 32 are plotted—
are nearly indistinguishable indicating that (4) captures
the spatial variation more than adequately. It is inter-
esting to note that an exponential profile for the ACC
is also supported by observations (Marshall et al. 1993)
and Fine Resolution Antarctic Model results (Killworth
1992; Krupitsky et al. 1996). The e-folding depth of the
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FIG. 4. Results from a typical numerical simulation. Surface temperature is plotted on the left
and a cross section of the zonal mean temperature on the right. The time for each plot is given in
rotation periods. The contours interval is 18C with lighter contours for cooler temperatures.

FIG. 5. Time evolution of the temperature anomaly, T, in 8C, at r/R
5 2/3.

vertical profile, he, gives a measure of the depth of the
front. To quantify the lateral gradient we define the
strength of the front Db as the difference in buoyancy
across it at the surface:

Db [ M(R) 2 M(0) 5 b(r 5 R) 2 b ,r50 (5)

where

b [ M(0)r50 (6)

is the minimum surface buoyancy.

A series of experiments was run with varying surface
forcing and rotation rates, as summarized in Table 1.
The resulting equilibrium e-folding depth and buoyancy
strength diagnosed from each experiment is also tabu-
lated.

b. Buoyancy budgets

By diagnosis of the numerical simulations, we can
determine buoyancy budgets that reveal the importance
of various fluxes in the model. For example, consider
the buoyancy budget of a cylinder of variable radius 0
# r # R extending over the entire depth of the fluid
(see Fig. 8a). At equilibrium, the net buoyancy in the
cylinder is conserved. Therefore the fluxes out of the
cylinder, due to the surface buoyancy loss (we are cool-
ing at the center) and Ekman transport (which is outward
since the fluid moving outward at the surface is warmer
than the fluid moving inward at the bottom), must bal-
ance inward fluxes due to horizontal eddy fluxes. In Fig.
8b, we plot these three terms versus the normalized
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FIG. 6. Cross sections of the mean temperature anomaly (a) and
mean thermal wind velocity (b). The temperature is in 8C, while the
velocity is in cm s21.

FIG. 7. The 31 vertical profiles of buoyancy in the core of the current,
normalized by their surface values, and a best fit exponential.

FIG. 8. (a) A cylinder of variable radius, 0 , r , R, and extending
the full depth of the tank, H. At equilibrium, the outward buoyancy
fluxes due to surface buoyancy loss and the net Ekman transport are
balanced by inward eddy buoyancy fluxes. (b) The buoyancy budget
for the cylinder shown in (a) as diagnosed from the reference nu-
merical simulation. A flux into the cylinder is considered positive.
The values are normalized by the net surface buoyancy cooling over
the disc of radius r0, i.e., Br r.r0#0

radius of the cylinder, r/R, for the reference simulation.
The total flux is nearly zero, indicating that we have a
balance. As such, other possible fluxes, for example
explicit horizontal diffusion, play at most a minimal
role. We also see that the primary balance is between
the eddy transport and Ekman transport, with the surface
heating playing a secondary role.

Next, we consider the buoyancy budget over a disc
extending the full radius of the domain R with variable
depth 2H , z , 0 (see Fig. 9a). The downward flux
out of the disc consists of Ekman pumping and vertical
diffusion, while the upward flux into the disc is achieved
by eddies. In Fig. 9b, we plot the various terms as a
function of normalized depth, z/H, for the reference sim-
ulation. Once again, the total flux is near zero (except
at the surface) and the primary balance is between the
Ekman transport and the eddy transport.

c. The eddy fluxes

The buoyancy budgets clearly show the central role
played by eddy fluxes in setting up the ambient strati-
fication. In order to develop a theoretical understanding
we now examine the nature of the fluxes in more detail.

Let us suppose that the horizontal eddy flux is directed
downgradient with an eddy diffusivity K defined by

]b
y9b9 5 2K . (7)

]r

The diagnosed eddy diffusivity is not constant in our
numerical simulations but has a pronounced maximum
near the surface. This can be seen in Fig. 10a where we
plot the vertical profile of the horizontally averaged K
for the reference experiment. The eddy diffusivity is
roughly constant in the interior but increases by some
30% toward the surface. This is a robust pattern ob-
served in all our experiments.

Hence, we write the net lateral buoyancy flux thus:

0 0 ]b
y9b9 dz 5 2 K(z) dzE E ]r

2H 2H

0 ]b
5 2(1 1 e)K dz, (8)I E ]r

2H
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FIG. 9. (a) A disk extending the full radius of the tank and down
to a variable depth 2H # z # 0. At equilibrium the downward
buoyancy fluxes due to Ekman pumping and diffusion are balanced
by upward eddy buoyancy fluxes. (b) The buoyancy budget for the
disk shown in (a) as diagnosed from the reference numerical simu-
lation. A flux into the disc is considered positive. The values are
normalized as in Fig. 8.

FIG. 10. (a) The vertical profile of eddy diffusivity as diagnosed
from the reference numerical simulation using (7). Values are nor-
malized by the interior value of the diffusivity, KI. (b) The diagnosed
value of KI vs the formula U 3 R for all experiments (stars). The
slope of the best fit line gives us the eddy efficiency coefficient ce

5 0.043.

where KI is the value of the diffusivity in the interior
and e is a small positive constant. For the reference
experiment we find that e 5 0.11 (see Fig. 10).

We assume, as in Marshall et al. (2002), that the eddy
diffusivity is proportional to the average surface thermal
wind, U, multiplied by a transfer length scale, Lm; that is,

K 5 c U L ,I e m (9)

where ce is the eddy efficiency parameter and the av-
erage surface thermal wind is given by

R

u(r, 0) drE
R 0

0 1 ]b
U 5 5 dz dr. (10)E ER f R ]r0 0 2H

The numerical simulations suggest that the eddies will
cascade to the largest scale supported by the geometry
of the tank; that is, Lm 5 R.

Relation (9) finds support in the numerical simula-
tions. In Fig. 10b, we plot the KI diagnosed from the
simulations versus U 3 R. The data fall roughly on a
straight line with the slope giving the eddy efficiency

parameter ce 5 0.043, somewhat smaller than that re-
ported in Marshall et al. (2002), but consistent with the
values found by Visbeck et al. (1996), Whitehead et al.
(1996), and Jones and Marshall (1997).

Finally we consider the surfaces along which the eddy
flux is directed. If the eddy flux has a diapycnal com-
ponent, then it is useful to write

w9b9 5 ms y9b9, (11)r

where the magnitude of the diapycnal flux is controlled
by m, the ratio of the slope along which the eddies
transfer to the isopycnal slope sr, given by

w9b9 1
m 5 . (12)1 21 2y9b9 sr

If the eddy flux is purely along isopycnals, that is, adi-
abatic, then m 5 1. Treguier et al. (1997) and Marshall
(1997) suggest eddies are adiabatic except in the mixed
layer in which the density is vertically homogeneous
and eddy transport is purely horizontal and thus purely
diapycnal. On diagnosing our numerical simulations we
find that m is close to one in the interior but decreases
sharply to zero toward the surface.

3. Theoretical model

a. Transformed Eulerian mean formulation

We now examine the zonally and temporally averaged
equations in the statistically steady state. For incompress-
ible flow, conservation of buoyancy can be written as
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FIG. 11. (a) The mean streamfunction given by (1), (b) the eddy
induced streamfunction given by (15), and (c) the residual circulation
stream function given by (14), determined from the reference ex-
periment and multiplied by r. Positive contours are solid: a clockwise
circulation, negative contours are dashed: a counter-clockwise cir-
culation). Streamfunctions have been normalized by the maximum
of the mean streamfunction. Contour interval is 0.2 in (a) and (b)
and 0.05 in (c).

]b ]b 1 ] ]
y 1 w 1 (ry9b9) 1 w9b9

]r ]z r ]r ]z
2]B ] b

5 1 k , (13)
2]z ]z

where y is the radial velocity and w is the vertical ve-
locity. In (13) the variables have been separated into
mean (zonal and time) quantities, , and perturbationsb
from this mean, b9. The buoyancy forcing has been writ-
ten as the divergence of a buoyancy flux, B, with a
positive value indicating a flux of buoyancy into the
fluid. We have included vertical diffusion but, guided
by Fig. 8, horizontal diffusion has been neglected.

It is very instructive to rewrite the equations in terms
of a residual mean meridional circulation (see Andrews
et al. 1987 for a background discussion). Following
Held and Schneider (1999), we introduce the residual
mean streamfunction in terms of vertical eddy fluxes
and write

C 5 C 1 C*,res Ek (14)

where Ek is given by (1) and C* byC

w9b9
C* 5 2 , (15)

br

which vanishes at the surface and bottom of the fluid.
The residual mean meridional circulation is given by

]C 1 ]resy 5 2 , w 5 (rC ), (16)res res res]z r ]r

where the subscript res denotes ‘‘residual.’’ Noting that
the advecting velocities in the Eulerian balance (13) are
ageostrophic and associated with the directly wind-driv-
en flow, Ek, we eliminate them in favor of Cres usingC
(14), to arrive at an alternative form of (13):

21 ]B ] b 1 ]
J(rC , b) 5 1 k 2 [r(1 2 m)y9b9], (17)res 2r ]z ]z r ]r

where J(rCres, b) 5 (rCres)rbz 2 (rCres)zbr and m is
given by (12). Equation (17) states that the advection
of buoyancy by the residual recirculation is induced by
surface forcing, vertical diffusion, and a diapycnal eddy
flux.

To arrive at (17) from (13) we decomposed the eddy
fluxes ( , ) into an along isopycnal componenty9b9 w9b9
( /sr, ) and the remaining horizontal componentw9b9 w9b9
( 2 /sr, 0). The divergence of the along iso-y9b9 w9b9
pycnal component is then written as an advective trans-
port

w9b9 1
* *= · , w9b9 5 y b 1 w b 5 J(rC*, b).r z1 2s rr

The divergence of the diapycnal (horizontal) eddy flux,
leads to the last term on the right-hand side of (17). If
the eddy flux is solely along isopycnals, m 5 1, then

the diapycnal horizontal component vanishes and the
advective transport captures the entire eddy flux.

In Figs. 11a and 11b we plot the mean wind-driven
Eulerian circulation, CEk, and the eddy-induced circu-
lation, C*: to leading order they are in balance. This is
just a different way of expressing the balance of terms
seen in Figs. 8 and 9. In Fig. 11c, we plot the residual
circulation. It consists of a large counterclockwise over-
turning cell that has an amplitude of only 20% of the
Ekman transport. A small, surface trapped clockwise
overturning circulation is also evident. At the surface,
Cres changes sign roughly where the buoyancy forcing
changes sign. The major cell advects warm fluid upward
and inward so that it can be cooled at the center. In the
interior there is very little lateral motion and weak ver-
tical circulation is associated with diapycnal fluxes. Un-
der the cooling, the residual circulation fluxes buoyancy
downwards to offset convection. Under the heating, the
residual circulation fluxes buoyancy upwards to offset
vertical diffusion. Furthermore, the no-flow conditions
on the tank wall forces the residual circulation to be a
closed, and hence, diabatic cell. In section 4 we discuss
how changing the lateral boundary conditions to allow
flow in and out of the domain, can allow a much stronger
adiabatic residual circulation that resembles what is ob-
served in the ACC.

b. Scaling analysis

Before discussing more detailed solutions, we first
study the leading balances to yield simple formulas for
the depth and strength of the front in terms of the surface
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forcing—these were the central focus of Marshall et al.
(2002).

At leading order we assume that the buoyancy flux,
vertical diffusion and diapycnal terms are vanishingly
small (see Fig. 9). Thus setting B → 0, m → 1, and k
→ 0 in (17), we find that the net advection of buoyancy
must vanish and hence Cres → 0—as supported by Fig.
11. From (14), (15), and (11) with m 5 1 the residual
circulation is given by

t y9b9
C 5 1 . (18)res f b z

If Cres vanishes, then

t [y9b9]e505 2 , (19)
f b z

where the subscript e 5 0 indicates that this is the lead-
ing order eddy flux given by

[y9b9] 5 2K b . (20)e50 I r

At leading order, we assume that the eddy diffusivity
takes on the constant interior value throughout the water
column.

Equation (19) is the ‘‘vanishing of the Deacon Cell’’
and corresponds to the balance espoused by Johnson
and Bryden (1989). Physically this may be interpreted
as representing the transfer of momentum, imparted by
the wind at the surface, through the column by ‘‘eddy
form drag’’ (associated with the ‘‘bolus’’ flux 5y9h9

/ z). If the isopycnal slope, sr 5 2 r/ z, scales likey9b9 b b b
he/R, then (19) implies

h te 0K ; , (21)I R f

where t0 is the scale of the wind stress.
At next order, we suppose that there is a buoyancy

flux through the sea surface, so a nonzero Cres develops
to balance it, carrying heat from the heated region to
the cooled region (see Fig. 11c). Assuming b scales like
Db and B like B0 then (17) implies that

2RC Db ; R B ,res 0 (22)

where we again assume that the diffusive and diapycnal
terms on the right-hand side of (17) are negligible.

In order to continue we need a scaling for the residual
circulation. The residual circulation develops because
the eddy buoyancy flux increases toward the surface
inducing a circulation that exceeds the Ekman transport.
Advection by the resulting Cres then balances the buoy-
ancy flux through the surface. Substituting (19) into (14)
gives

[y9b9] y9b9 be50 rC 5 2 5 (K 2 K ) . (23)res Ib b bz z z

Following the discussion in section 2c, we write

K 2 K 5 (1 1 e)K 2 K 5 eK ,I I I I

where e is defined by (8). It then follows from (23) that
the strength of the residual circulation is given by

h te 0C ; eK ; e , (24)res I R f

where (21) has been used. We see that Cres is only a
small fraction of the mean and eddy-induced circula-
tion—our reference experiment gives e ø 0.1—as sup-
ported by Fig. 11c.

Using (24) it follows from (22) that

B fR B0 0Db ; 5 const 3 , (25)
et w0 E

where

t 0w 5E fR

is a typical scale of the Ekman pumping. For a KI given
by (9), it follows using (10) and (4) that

c h Dbe eK ; (26)I f

and from (24), (25), and (26) that

1/2 1/2
e f

h ; t 5 const 3 w R. (27)e 0 E1 2 1 2c B f Be 0 0

Formulas (25) and (27) have the same form as Eqs. (18)
and (16) of Marshall et al. (2002). They will broadly
account for the dependence of he and Db on external
parameters found in our explicit solutions, described
below.

c. Buoyancy budget model

We can derive a more detailed mathematical model
of the stratification by examining the horizontal and
vertical buoyancy budgets discussed in section 2 (see
Figs. 8 and 9). We use the buoyancy (4), the eddy pa-
rameterization (9), and the eddy fluxes (see section 2c)
to construct a system that can be solved for the e-folding
depth he and horizontal structure M(r) of the front. The
details of the model are given in the appendix.

The model takes as input the surface forcing—the
strength and form of the wind stress and buoyancy forc-
ing—and requires the specification of three parameters:
the buoyancy at the center of the tank br50, the increase
in lateral eddy flux at the surface e, and the eddy effi-
ciency ce.

For each simulation, the parameter br50 in (6) is set
to the value diagnosed from the simulation. The coef-
ficient ce is held constant and set equal to 0.043 as
suggested by Fig. 10. The parameter e is tuned to obtain
the best fit and yields an optimal value of

e 5 0.10. (28)

The increased eddy diffusivity in the mixed layer results
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FIG. 12. Plots comparing the numerical simulations and theoretical predictions. (a) The strati-
fication of the reference simulation and (b) that predicted by theory. (c) and (d) he and Db plotted
as diagnosed for the simulation vs that predicted by the theory. The stars are the data; the line
indicates a perfect match. The depth he is normalized by H and the strength Db by br50.

in a 10% increase in the lateral buoyancy flux and so
the residual circulation is roughly 10% of the mean
circulation.

In Fig. 12 we plot the contours of the buoyancy from
the reference numerical experiment (a) and as predicted
by the theory (b). Clearly its essential form has been
captured. We also plot values of the e-folding scale he

(c) and the buoyancy strength Db (d) as diagnosed from
the simulation versus the value calculated from the the-
ory. The points lie along a straight line, indicating that
the theory is capturing the dependence of the stratifi-
cation on the varying forcing.

4. Using the theory to make predictions

a. Application to ACC

Having established that our theory can broadly ex-
plain the results of our numerical simulations, we apply
our model to the ACC. Obviously, the dynamics of the
ACC involve many complications that are not present
in either our numerical simulations or theory. Here, we
wish only to determine whether our theory can predict
a plausible stratification and depth scale for the ACC.

Typical parameter values for the ACC are

22 23t 5 0.2 N m , r 5 1030 kg m ,s ref

R 5 2500 km, H 5 4500 m,
29 2 23 25 2 21B 5 5 3 10 m s , k 5 1.5 3 10 m s ,0

24 21 23 22f 5 1.2 3 10 s , b 5 5 3 10 m s ,r50

while we hold ce and e to the values given above. In
the above, ts is the scale of the wind stress, the scale
of the wind stress per unit density is

24 2 22t 5 t /r 5 1.9 3 10 m s0 s ref

so that

t 0 27 21w 5 5 7.9 3 10 m s .E fR

The Ekman pumping scale is equivalent to an average
pumping velocity of 225 m yr21. Assuming a thermal
expansion coefficient of 1 3 1024 K21, the buoyancy
flux corresponds to an average cooling of 20 W m22

south of the Polar Front at 608S. The surface buoyancy
flux pattern (see Fig. 3) and typical scale of the flux
chosen here are at best a crude guess at the actual surface
flux forcing the ACC. We discuss the complex nature
of the observed surface buoyancy flux and possible im-
plications in the conclusions.
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FIG. 13. Contours of the buoyancy (upper plot in cm s22) and thermal wind current (lower plot
in cm s21) as predicted by the theory with forcing typical of the ACC (left) and from Levitus
and Boyer (1994; right).

The theory predicts the Polar Front and thermal wind
current shown in Fig. 13. The front has

23 22h 5 1040 m, Db 5 7.3 3 10 m s ,e

corresponding to a temperature jump of 7.48C. The as-
sociated thermal wind current has a maximum velocity
of 5 cm s21 with a transport of 62 Sv (Sv [ 106 m3

s21). In Fig. 13 we have also plotted the alongstream
averaged buoyancy and corresponding thermal wind ve-
locity as calculated from the hydrological data (Levitus
and Boyer 1994). The transport of the thermal wind is
roughly 100 Sv. Although the depth of the front is rea-
sonable, the velocity and transport of the current are
somewhat lower than than observed in the ACC. The
ACC is a much sharper front than our model predicts,
increasing the velocity and transport. This is a conse-
quence of the fact that the e-folding depth of the ACC
is not constant but increases as one travels northward.
Yet, that the predicted stratification and flow of the ACC
are within a factor of 2 of observations lends credence
to our belief that our numerical simulation and theory
is describing the leading order process that establishes
the ACC. We discuss how these features may be altered
by other effects—the b plane, topography, etc.—in the
conclusions.

b. Variations in forcing

How, according to our theory, does the stratification
and flow of a circumpolar current change when the mag-

nitude of the wind stress ts and buoyancy flux B0 are
varied? We will use the ‘‘typical’’ ACC parameter val-
ues given above as our reference state.

In Figs. 14a and 14b, we plot he and Db versus ts,
all other parameters being held constant at their refer-
ence values. For high wind stress, the front deepens
linearly with wind stress while the strength varies in-
versely to the wind stress, exactly as predicted by (27)
and (25); the dashed lines in Figs. 14a and 14b represent
the formulas in (27) and (25). For low wind stress we
enter the diffusive regime (see appendix) in which both
the depth and the strength of the front increase, but with
only a weak dependence on the wind stress.

In Figs. 14c and 14d we plot he and Db versus B0,
all other parameters being held constant at their refer-
ence values. The depth decreases as the surface forcing
increases and is much more sensitive to changes in the
forcing when it is weak. The strength of the front in-
creases linearly with the forcing, again in accord with
(25) and (27).

Having obtained the stratification of the front, we can
easily obtain the transport of the associated thermal
wind current. The baroclinic transport of the current is

0 R

T 5 u dr dzbc E E
2H 0

2h Db H He5 1 2 1 1 exp 2 , (29)1 2 1 2[ ]f h he e
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FIG. 14. Plots of (a) the frontal depth he and (b) the strength Db vs wind stress for fixed B0

and f . The dashed curves are given by (27) and (25). Plots of (c) he and (d) Db vs the surface
buoyancy flux for fixed ts and f .

FIG. 15. Log–log plots of the baroclinic transport as predicted by
the theory vs wind stress (a) and surface buoyancy forcing (b). The
dashed lines show a slope of one in (a) and 21/2 and 1/2 in (b).

where (4) has been used. The baroclinic transport can
be expressed in terms of the stratification—the e-folding
depth he and the meridional buoyancy anomaly Db. Note
that, if the leading order balance between the wind stress
and eddy flux holds [i.e. (21)] and the eddy parameter-
ization holds [i.e. (26)], then it follows that

tR
T ; ; (30)bc c fe

the transport varies linearly with the wind stress.
In Fig. 15 we show log–log plots of the baroclinic

transport predicted by the theory versus the wind stress
(a) and the buoyancy forcing (b). For high wind stresses,
ts . 0.1 N m22, the transport varies linearly with the
wind stress, as suggested by (30). The transport does
vary with buoyancy forcing—for typical ACC values,
the transport decreases like the square root of the buoy-
ancy forcing. Similarly, for low wind stress, the trans-
port does not depend linearly on wind stress. This sug-
gests that the leading order balance of winds and eddy
fluxes that gives (30) is not solely responsible for de-
termining the transport and that this balance breaks
down as either the winds decrease or the buoyancy forc-
ing increases. For very strong winds or weak surface
forcing, the current is very deep (see Fig. 14) and the
finite depth of the domain restricts the transport [see
(29)].

How do these predictions compare with those of other
investigators? Johnson and Bryden (1989) suggested the
transport varies like the square root of the wind stress,
while Straub (1993) suggested the transport is indepen-
dent of the wind stress. The two-layer simulations of
Tansley and Marshall (2001) suggested that both could
hold, the former for strong wind stresses and the latter
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FIG. 16. A sketch of the diabatic Deacon cells driven by surface
buoyancy fluxes. Three cells are driven by buoyancy loss north of
the Polar Front, buoyancy gain south of the Polar Front, and weak
buoyancy loss in the far south near Antarctica. In the southern cell,
LCDW upwells loses buoyancy at the surface and subducts to form
AABW. In the central cell, UCDW upwells gains buoyancy at the
surface and subducts to form AAIW. In northern cell, SAMW upwells
and loses buoyancy at the surface and subducts to form AAIW.

for weak wind stresses. However, all these studies as-
sume that the stratification is known a priori and do not
consider buoyancy effects. Recent simulations by Gnan-
adesikan and Hallberg (2000) using a two-layer model,
which parameterized diapycnal fluxes in terms of a ver-
tical velocity, resulted in an ACC with a transport that
varied linearly with the wind stress. Though their bal-
ance is somewhat different from ours, they recognize
that changing the wind stress changes the structure of
the Polar Front, particularly the depth and lateral density
gradients, just as described here.

c. ACC residual circulation

To complete our discussion of the application of our
results to the ACC, we return to the residual circulation,
which redistributes tracers in the meridional plane and
establishes how they are subducted from the surface. It
also controls the transformation of water masses, de-
termining the rate at which water is brought to the sur-
face to be transformed by exposure to air–sea fluxes.
As such, it is essential in determining the role of the
Antarctic region in the thermohaline circulation.

We consider (17) in the limit most likely relevant to
the ocean where diffusion and diapycnal eddy fluxes are
negligible, giving

]B
J(C , b) 5 . (31)res ]z

For application to the ocean we will work in a cross-
stream coordinate, y, so that J(Cres, b) 5 (Cres)ybz 2
(Cres)zby.

If we consider (17) in the mixed layer, where vertical
gradients of buoyancy vanish, then we have

]C ]b ]Bres m2 5 ,
]z ]y ]z

where bm(y) is the mixed layer buoyancy. Integrating
over the depth of the mixed layer gives

]bmC (z 5 2h ) 5 B, (32)res m ]y

where B is the surface buoyancy flux. This result can
also be obtained by considering the budget of buoyancy
between two isopycnals following Marshall (1997). The
residual circulation is forced locally by the surface
buoyancy flux. If, for example, the mixed layer buoy-
ancy gradient is constant, the residual circulation will
be directly proportional to the surface buoyancy flux at
each latitude. We see this structure at the surface in Fig.
11c with a negative residual circulation under the cool-
ing and a positive residual circulation under the heating.

For scales typical of the ACC given in section 4a,
one can estimate the strength of the residual circulation
using (22) to get

2 21C ; 0.94 m s .res

The net transport by the residual circulation over the
length of the ACC (;20 000 km) is then of order 18.8
Sv, consistent with the analysis of Marshall (1997),
which found residual circulations of 10–15 Sv. Com-
pared to the zonal transport (;100 Sv), this flow is
weak. However, it is sufficient to supply, for example,
30–40 Sv of estimated southward transport of deep wa-
ter across the circumpolar zone.

Below the mixed layer the buoyancy forcing van-
ishes, so

J(C , b) 5 0,res (33)

implying that the residual circulation is directed along
isentropic surfaces in the interior. That is, unlike our
numerical simulation where the interior residual circu-
lation was diabatic, we expect the interior residual cir-
culation for the ACC to be adiabatic. Furthermore, the
northern boundary of the ACC is open to exchanges
with the oceans, and therefore allows the residual cir-
culation to transports buoyancy in and out of the ACC
region to balance any net surface flux.

The simple surface buoyancy forcing adopted in our
numerical experiments is not supported by all obser-
vations. For example, Speer et al. (2000), using Com-
prehensive Ocean–Atmosphere Data Set data and an
inverse model, argue that the ocean loses buoyancy
north of the ACC. The region of buoyancy gain is shifted
to the south of the Polar Front and is enhanced by fresh-
water sources from ice melt. Around Antarctica heat
loss and fluxes of salt from brine rejection as ice forms
compete with freshwater sources as ice melt. Their es-
timates suggest a weak buoyancy loss in the region. The
resulting residual circulation from such a scenario is
sketched in Fig. 16.

The two regions of surface buoyancy loss drive a
residual circulation cell that pulls relatively buoyant wa-
ter to the surface where it loses buoyancy to the at-
mosphere as it travels southward and subsequently sub-
ducts. Conversely, the surface gain of buoyancy pulls
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less buoyant water to the surface where it gains buoy-
ancy from the atmosphere as it travels northward and
subsequently subducts. In terms of the ACC nomencla-
ture, the southern most cell represents the upwelling of
Lower Circumpolar Deep Water (LCDW) and its trans-
formation into Antarctic Bottom Water (AABW). The
central cell represents the upwelling of Upper Circum-
polar Deep Water (UCDW) and its transformation into
Antarctic Intermediate Water (AAIW). And the northern
cell represents the upwelling of Subantarctic Mode Wa-
ter (SAMW) and its transformation into AAIW. Such a
scenario is discussed in more detail in Marshall (1997)
and Speer et al. (2000).

Our approach here is a somewhat simplistic view of
the complicated meridional circulations that play a role
in water transformation across the ACC. Further details
of the water signatures and heat and salt transformations
must be considered to complete the complicated trans-
formation process that closes the thermohaline circu-
lation (see Bryden and Cunningham 2001; Speer et al.
2000 for further discussion). However, it should be not-
ed that the dynamical framework set out here is in accord
with their descriptions.

5. Conclusions

In this paper we have examined the nonlinear inter-
action of surface forcing, eddies, and stratification with-
in the context of a circumpolar current. We have de-
scribed numerical simulations investigating how an ini-
tially homogeneous fluid responds to a combination of
both thermal and mechanical surface forcing. The forc-
ing mimics that found in the Southern Ocean: cooling
at the pole and heating in the subtropics with a zonal
wind stress driving a meridional overturning. Such forc-
ing creates a baroclinically unstable Polar Front in
which the resulting eddies sweep heat across the front
from the warm subtropics to the polar region. When the
eddy heat transport balances the surface forcing, a sta-
tistically steady state is achieved. The resulting front
supports a current, in thermal wind balance with the
sloping isopycnals, which we adopt as a simple analogue
to the ACC.

Adopting a TEM framework, we proceeded to de-
velop a theory that predicts the lateral structure and
depth of the front and the sense of the residual circu-
lation given the strength and form of the forcing. By
examining the buoyancy budgets we showed that, at
zero order, circulation driven by eddies balances the
mean wind driven transport (Figs. 8, 9, and 11). At next
order the residual circulation transports buoyancy across
the front to balance air–sea fluxes (see Fig. 11c). This
is our dynamical interpretation of the diabatic Deacon
cell found in the observations in Speer et al. (2000).

In the advective regime (see appendix), the depth of
the front varies linearly with the wind stress and in-
versely with the square root of the buoyancy forcing
[see (27)]. Conversely, the strength of the front varies

linearly with the buoyancy forcing and inversely with
the wind stress [see (25)]. The net baroclinic transport
varies linearly with wind stress and inversely with the
square root of the buoyancy forcing (see Fig. 15). The
present ACC is probably in the advective regime, with
diapycnal fluxes playing only a small role except in the
surface mixed layer. However, relatively small changes
in the forcing can move our model of the circumpolar
current into a diffusive regime (see appendix) where the
wind stress becomes less important in determining the
structure of the front and current.

Despite the idealized nature of our numerical exper-
iments, we believe the balances highlighted here are
important in the dynamics of the ACC. The leading
order balance between eddies and wind driven over-
turning has been recognized in numerical models as a
weakening or vanishing of the Deacon Cell (Döös and
Webb 1994; Danabasoglu et al. 1994). It has also been
supported by analysis of eddy fluxes calculated from
mooring data (Johnson and Bryden 1989; Phillips and
Rintoul 2000), altimetry (Keffer and Holloway 1988),
and eddy-resolving numerical models with realistic to-
pography (Ivchenko et al. 1996; Gille 1997).

It is clear from our examination here, that the buoy-
ancy forcing plays a critical role in the dynamics of the
ACC. Unfortunately, surface buoyancy budgets in the
Southern Ocean are poorly observed and understood.
Not only must heat fluxes and E 2 P be considered,
but the ACC is also a region of large salinity fluxes
associated with ice formation and melt (see discussion
in Speer et al. 2000). With our simple surface buoyancy
forcing and geometry, we generate a residual circulation
with a single overturning cell that transports buoyancy
polewards. But, by taking advantage of the TEM for-
mulation, we are able to connect our idealized simu-
lations and analysis to a more realistic description of
the ACC. With an adiabatic interior, the surface forcing
generates multiple diabatic Deacon cells, each associ-
ated with the transformation of water masses (see Fig.
16). Such cells play an essential role in closing the
thermohaline circulation by transforming UCDW into
AAIW (see Marshall 1997; Speer et al. 2000).

A key absence from our theory is the stabilizing in-
fluence of a b plane. Intuitively, one might expect the
b plane to inhibit eddy transport and result in a deeper
front. Since the transport grows like the square of the
depth and if the effect of b were to increase the depth
by only 30%, the transport would roughly increase to
100 Sv—within the range of observed values. It is not
nearly so simple to predict how the topography that the
ACC traverses will affect the stratification. Marshall
(1995), Gille (1997), Gnanadesikan and Hallberg
(2000), and Tansley and Marshall (2001) (among many
others) have illustrated the importance of the constric-
tions imposed by Drake Passage and bottom topography
in influencing not only the path of the ACC but the
formation of the eddies. The connection of topography
and eddy fluxes is essential if momentum is to be dis-
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sipated through the form drag scenario of Munk and
Palmén (1951) mentioned above. Such changes, obvi-
ously, modify the details of the buoyancy budgets dis-
cussed here. As such, this remains an active area of
research.

Finally, the ACC does not exist in isolation. Its in-
teraction with subtropical gyres, western boundary cur-
rents, and the flow and deep-water formation in the seas
around Antarctica will no doubt influence its structure.
The many complications in examining the influences on
the ACC when it is modeled as part of the global ocean
circulation can be seen in the recent work of Gent et
al. (2001).

While we continue to adapt our model, we are also
taking advantage of the growing database of satellite
observations to examine the balances proposed here and
predict the implied residual circulation. We believe that
through a combination of idealized studies like that pre-
sented here, detailed numerical modeling, and continued
analysis of observations we will be able to identify and
understand the processes that control the ACC.
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APPENDIX

Details of Analytical Model

In this appendix we describe the derivation and meth-
od of solution of an analytical model of the front that
calculates its lateral and vertical stratification given pat-
terns of surface forcing.

a. Buoyancy budgets

Following Marshall et al. (2002), we begin by for-
mulating the balances illustrated in Figs. 8 and 9 as
mathematical equations. Integrating (13) over the cyl-
inder of radius r shown in Fig. 8 gives the horizontal
budget equation

0 r

2pr (y b 1 y9b9) dz 5 2p B(j)j dj. (A1)E E
2H 0

Integrating (13) over the disc shown in Fig. 9 gives the
vertical budget equation,

R ]b
wb 1 w9b9 2 k r dr 5 0. (A2)E 1 2]z0

Using (2) with (1), (7), and (4) reduces (A1) to
dM t(r)

a 1 a M 52B, (A3)1 2dr f0

where

r1
B (r) 5 B(j)j dj (A4)Er 0

and a1,2 are constant in r and given by
0

a 5 K(z) exp(z/h ) dz, (A5)1 E e

2H

0

a 5 E (z) exp(z/h ) dz. (A6)2 E e

2H

Following the discussion in section 2c and expanding
the integrals we obtain

a 5 (1 1 e)K h [1 2 exp(2H/h )],1 I e e

where e is given by (8) and

a 5 1 2 exp(2H/h ),2 e

where it has been assumed that the Ekman layers are
thin relative to the e-folding depth. Then the solution
to (A3) is

r1
M(r) 5 M(0) 2 exp[I(j) 2 I(r)]B (j) dj, (A7)Ea1 0

where
ra2I(r) 5 t(j) dj. (A8)Ea f1 0 0

Similarly, the vertical balance (A2) reduces to

2R t dM K h dM kI e2 1 M r dr 5 0, (A9)E 1 2[ ]f dr M dr h0 e0

where we have assumed that we are below the Ekman
layer and mixed layer so that we can ignore the vertical
structure of e, K, and set m 5 1.

From (9), (10), and (4) it follows that

h Db HeK 5 c 1 2 exp 2 , (A10)I e 1 2[ ]f he

where Db is given by (5).
The model consists of three equations, the horizontal

buoyancy budget which determines the horizontal struc-
ture through (A7), the vertical buoyancy budget (A9),
and the definition of the strength of the front, Db, given
by (5). These equations are nonlinearly coupled through
(A10).

b. Method of solution

We define the functions
2R t dM K h dM kI eF(h , Db) 5 2 1 M r dr,e E 1 2[ ]f dr M dr h0 e0

(A11)

G(h , Db) 5 Db 2 M(R) 1 M(0),e (A12)

where M 5 M(r;he, Db) and M9 are given by (A7) and
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FIG. A1. Plots of the diapycnal advection (solid line) and the dif-
fusion (dashed line)—the two terms on the left of (A13)—as the wind
stress varies. The values have been normalized by the term on the
right of (A13) so that the two curves sum to one.

(A3), respectively. The integral in (A11) is evaluated
using MATLAB’s integral function quad8. The solution,
the values of he and Db such that (5) and (A9) are
satisfied, is given by the roots of functions G and F:

G(h , Db) 5 F(h , Db) 5 0.e e

These are solved using MATLAB’s root finding function
fzero. Given a reasonable first guess, typically 10 to
100 iterations are required to converge to a solution
accurate to several significant digits.

The parameters M(0), ce, and e must be given to
determine a solution. For comparison to the numerical
simulations the M(0) was diagnosed from the each sim-
ulation, ce 5 0.043 (see Fig. 10), and e is chosen so
that the solutions best fit the simulations.

c. Diapycnal advection and diffusion

In section 4, we assumed that diffusion was negligible
and determined a scaling for the depth and strength of
the front—see (25) and (27). Variations in ACC param-
eters seen in Fig. 14 are largely in accord with this
simple scaling. However, when diffusion is included in
the theoretical solutions, they depart from these simple
scalings for some choices of wind and buoyancy forcing.
In this appendix we examine the balance between dia-
pycnal fluxes—eddy advection and diffusion—and sur-
face buoyancy flux. In so doing we derive a measure
for when diffusion is important and scales for the depth
and strength of the front when diffusion dominates dia-
pycnal advection.

The leading order balance in (A3) and (A9) is be-
tween eddy flux and the mean wind-driven transport (see
Figs. 8 and 9). To get an equation that describes the
secondary balance, between diapycnal terms on the left
hand side of (17), we simply use (A3) to replace the
eddy term in (A9) to get

R e t dM K h B dM kI e1 1 M r dr 5 0.E 1 2[ ]1 1 e f dr a M dr h1 e0

Integrating the first term by parts gives

R e k
w 2 Mr drE 1 2[ ]1 1 e he0

RK h B dMI e5 r dr. (A13)Ea M dr1 0

Now we have a balance between diapycnal advection
(first term on lhs), diffusion (second term on lhs) and
surface buoyancy forcing (rhs).

In (A13), a combination of the diapycnal advection
and diffusion must balance the buoyancy forcing. This
leads to two scaling regimes, one where advection dom-
inates and one where diffusion dominates. The transition
between them is clearly illustrated in Fig. A1 where we
plot the two terms on the left of (A13) as a function of
wind stress ts. As the wind stress increases, we move

from a regime dominated by diffusion to one dominated
by advection.

We now examine the depth and strength of the front
in these two regimes, assumming that he K H so that
exp(2H/he) → 0. The leading order balance between
the eddy fluxes and the mean Ekman transport as dis-
cussed in the text (see section 3b); that is,

K hI e ; w R. (A14)ER

If we assume that diapycnal advection dominates the
diffusion in (A13),

e k
w k , (A15)E1 1 e he

then the diapycnal advection balances the heating, and
(A13) implies

ew Db ; B .E 0 (A16)

Relations (A14) and (A16) are equivalent to those found
in section 3b and can be rearranged to give the formulas
for Db and he given by (25) and (27), respectively. Given
(27) we can rewrite (A15) to get

1/4 1/2 1/42(1 1 e) c k Be 0w k [ w . (A17)E c3 1 2 1 2[ ]e R f0

Thus, wc gives us a critical pumping that delineates
between the regime dominated by diapycnal eddy fluxes
and the regime dominated by diffusion. Note that this
critical pumping value depends on the buoyancy forc-
ing, increasing as the buoyancy forcing increases and
thus moving towards the diffusive regime.

For typical numbers of the ACC, the wind stress cor-
responds to an Ekman pumping velocity scale of

27 21w 5 7.9 3 10 m s .0

Calculating the critical value of the pumping we get
27 21w 5 7.5 3 10 m s ,c

indicating that the ACC exists in the regime where ad-
vection is greater than diffusion. Figure A1 indicates
that at ts 5 0.2, the advective term is larger than dif-
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fusive term, but it also illustrates that a small reduction
in wind stress moves the ACC into a regime where
diapycnal advection and diffusion contribute equally.

If the pumping is weak,

e k
w K , (A18)E1 1 e he

the diapycnal advection is dominated by the diffusion.
Now, diffusion balances the buoyancy flux term in
(A13), implying that

kDb B0; . (A19)
h 1 1 ee

Combining (A19) with (A14) and using (A10) gives

1/32 21 1 e f B w R0 0 EDb ; ,
21 2c ke

1/3
21 f kw R0 Eh ; .e 2[ ](1 1 e) c Be 0

In the diffusive regime, the depth and the strength of
the front grow slowly with increasing wind stress as
seen in Fig. 14 when the wind stress is low.

Furthermore, if the wind stress is very weak the lead-
ing order balance between winds and eddy fluxes may
break down, with the eddy flux balancing the surface
buoyancy flux. However, while this limit may help ex-
plain the behavior in Fig. 14, and 15 at low ts or high
B0, we do not believe that it is relevant to realistic ocean
dynamics.
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