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ABSTRACT

Steady solutions in which quasi-geostrophic potential vorticity is constant along a streamline of the flow are
derived for a baroclinic ocean. Friction, transfer by geostrophic eddies, and wind forcing are treated as high-
order effects that serve only to remove the indeterminacy of completely free flow. Solutions are obtained that
are a generalization to a baroclinic ocean of Fofonoff’s barotropic calculations. The vortex stretching permitted
by stratification is found to allow gyres in which, in an integral sense, lateral down-gradient eddy transfer of
potential vorticity, g, balances the wind-stress curl. Beneath the surface layer, the effect of eddies is then to make

¢ uniform if g contours close on themselves.

Our simple solutions have many features in common with observations of the subtropical recirculation and
with the mean flows obtained from eddy-resolving, quasi-geostrophic numerical models. In particular, the
southern margin of the recirculation is found to recede progressively toward the line of zero wind-stress curl
with increasing depth, the isopycnals sloping downward toward the northern boundary of the subtropical gyre.

1. Introduction

Recent mappings of the potential vorticity field, g,
of the world’s oceans (e.g., see Keffer, 1985; McDowell
et al., 1982) show that there is strong advective control
of the g contours. Rather than the g contours being
coincident with latitude circles, as one would expect if
the flow were weak, the g contours are strongly per-
turbed by the motion field, particularly in the “bowl!”
of the wind-driven circulation in the upper kilometer
or so. Such evidence casts doubt on the relevance of
linear theories of the mean circulation (where g is set
by the planetary vorticity) and have encouraged us to
reconsider the other asymptotic limit, that of steady
conservative flow, where g is constant along streamlines
of the flow ¢.

In this paper the consequences of viewing the wind-
driven ocean circulation as an almost free, steady flow
are examined. Forcing and dissipation act only to select
the functional relationship between y and ¢. The con-
straint on the possible flow configurations that absolute
vorticity must be constant along streamlines was con-
sidered by Fofonoff (1954), in the context of barotropic
homogeneous ocean circulation theory. Niiler (1966)
extended the study to investigate those forcing and dis-
sipation processes that could equilibrate a Fofonoff
gyre. He showed that a Fofonoff gyre, resonantly forced
by a wind-stress curl, could not be equilibrated by
transferring absolute vorticity laterally down the ab-
solute vorticity gradient.

Here the studies of Fofonoff and Niiler are extended
to consider steady, free circulation in a stratified ocean
model governed by quasi-geostrophic dynamics. It is
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shown that by allowing vortex stretching to play its
role in modifying the potential vorticity, it is possible
to consider gyres in which, in an integral sense, the
forcing due to the curl of the wind stress is balanced
by lateral downgradient transfer of potential vorticity
eddies. Beneath the directly wind-driven layer the effect
of eddies is then to make g uniform, as in the model
of Rhines and Young (1982). Our formulation, how-
ever, is complementary to theirs in that it includes
boundary currents where the inertial terms play a role
and so the Sverdrup constraint on the depth integrated
flow is broken. Friction, eddy transfer, and wind forcing
are treated as high-order effects that serve only to re-
move the indeterminacy of purely inviscid flow. Inertial
boundary currents become an integral part of the so-
lution—there is no need to match a Sverdrup interior
to a western boundary region or, indeed, to restrict
attention to midocean gyres where the western bound-
ary plays no role. It should be noted, however, that
here no account is taken of ventilation of the ther-
mocline through surface outcrops, such as in the model
of Luyten et al. (1983). The penetration of the gyre
below the directly wind-driven layer is possible because,
as in Rhines and Young’s theory, the g contours are
closed and do not connect to the lateral boundaries or
outcrop at the surface.

In essence, a series of Fofonoff gyres is obtained

- “stacked” one on top of the other, but diminishing in

strength and progressively receding to the latitude of
the zero wind-stress curl with depth. We show that these
simple, analytic solutions have many properties that
compare remarkably well both with the results from a
numerical model (the eddy-resolving quasi-geostrophic
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model described in Holland et al., 1984) and with ob-
servations of the subtropical recirculation (reported by
McCartney, 1982). In particular, it is a fundamental
property of our solutions that the isopycnals slope down
toward the northern boundary of the subtropical gyre,
in agreement both with the models and observations.

In section 2 the general methodology of our ap-
proach is set out and placed in context, reviewing the
main results of barotropic free inertial theory. In section
3 free solutions in 1% and 22 layer models are con-
sidered and in section 4 an N2 layer model is described.

2. Fofcing and dissipation and the ¢/ relationship

We shall consider flows governed by the potential
vorticity equation '
d
a—‘t’+J(¢,q)=9r—:0 @.1)
where q is the quasi-geostrophic potential vorticity used

in several forms below, Yy the quasi-geostrophic
streamfunction

dxdy dydx '

the Jacobian of ¥ and g, & a potential vorticity source,
D a sink, x east, y north and ¢ time.

Extending the barotropic studies of Fofonoff (1954)
and Niiler (1966), we consider the constraints that must
be satisfied by flows in steady (d/9¢ = 0) baroclinic cir-
culation. The most important of these constraints is
that if the flow is free (i.e., ¥ = D = 0) the potential
vorticity g is conserved along a streamline ¢. The exact
coincidence of g and ¢ is, of course, an extreme
asymptotic limit. It is of interest because it directly
addresses the most important consequence of nonlin-
earity, that is, the modification of the potential vorticity
by the motion field tending to align the ¥ and g con-
tours. Linear theory, at the other extreme, puts the
emphasis on the departure of the y from a fixed g ge-
ometry.

The following conceptual model of the ocean cir-
culation is adopted: it is supposed that the ocean cir-
culation can achieve all the transfers necessary to offset

potential vorticity sources and sinks by making only

small adjustments to configurations in which g is con-
stant along streamlines.
Then, writing

" F-D=¢G, G~OBIVY]) 2.2)

where @ is the planetary vorticity gradient, df/dy, with
fthe Coriolis parameter; the fundamentally free nature
of the circulation is reflected in the choice of a small
e. As is shown in appendix A, ¢ can be regarded as a
recirculation index that can be expressed as the ratio
of the Sverdrup velocity scale to the interior flow speed
of a Fofonoff gyre. We expand the solution to Eq. (2.1)
in terms of ¢, writing
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Y=voteht: .- _
q=qoteqit - (2.3)
G=Got Gy + -+ -
Direct substitution into Eq. (2.1) gives at zero order
J(¥0,90) =0
thatis, go=go(¥o). (2.4)

Thus the zero-order problem allows an infinite number
of possible choices for gy = go(¥o). However, not all
yield a valid solution at next order. In other words, not
all go(yp) are compatible with the integral forcing and
dissipation balances which appear at next order.

In an enclosed ocean basin the streamlines are closed,
and integration of Eq. (2.1) over the region inside such
a streamline of constant ¥ gives ’

ff V- (vq)dA = ff eGdA=>“f(vo+eV1+ <)

inside yg inside Yo

X(go+eq+ -+ ’)‘mdl=€ff(Go+eGl)dA

where ny is a unit vector normal to closed ¥, contours.

Clearly all terms involving v, in the line integral
vanish, and by continuity so must the v,go. Thus the
O(e) balance yields

[ [ eua=o,

giving a condition on the zero-order flow in Eq. (2.4).
The physical content of Eq. (2.5) is straightforward,
for it merely states that a necessary condition for steady
inviscid flow to be only weakly perturbed by potential
vorticity sources and sinks is that net forcing must bal-
ance net dissipation over a closed streamline of this
flow. It is important to realize that Eq. (2.5) is a state-
ment of integral balance; it does not imply a local bal-
ance between sources and sinks. An alternative deri-
vation of the condition Eq. (2.5) along with an illu-
minating discussion can be found in Pierrehumbert
and Malguzzi (1984).

The study of Niiler (1966) involved an application
of the above balance to barotropic flow in a closed
basin. He considered which & and D could equilibrate
the inertial flows found by Fofonoff (1954).

Taking

2.5)

_kecurlr
pH .
as the potential vorticity source provided by the wind-

stress curl, k - curl r, where k is a unit vector pointing
vertically, p the density and H the depth, and

$ = eVZ%,

a potential vorticity sink provided by bottom friction,
the integral balance Eq. (2.5) takes on the form

F



NOVEMBER 1986

1

pH Jy,

Thus, over each closed streamline, the wind-stress
forcing must be balanced by bottom friction. This is a
constraint on the allowable functional relationships
between g and .

It appears that no direct application of the balance,
Eq. (2.6), to determine the flow field from a given wind-
stress field is straightforward. It requires a numerical,
iterative approach (cf. Merkine et al., 1985), which is
probably at least as complicated as spinning up an
ocean model to a steady state. Instead, Niiler (1966)
adopted a Fofonoff gyre (with a linear go/y, relation-
ship) as the zero-order flow satisfying

T dl=e¢Pvy-dl (2.6)

go="?Yo+ By (2.7a)
2.7b
do = go(Yo) (2.70)
with
@ =— B > 0 a positive constant (2.7¢)

Ao U,

where Uy < 0 is the interior westward flow (see Fig. 1).
He introduced a weak bottom friction and then, from
Eq. (2.6), computed the form of the wind-stress curl
forcing required to offset it. Precise details are not of
interest. The important point is that a plausible wind-
stress curl can always be chosen to equilibrate a baro-
tropic, Fofonoff gyre in the face of weak bottom friction
so long as [from (2.6)] § 7-dl has the same sign as
§ vo- dl; the sense of circulation reflects the sign of the
vorticity input. The detailed form of 7 is not important.

FIG. 1. Contours of ¢ in a Fofonoff (1954) gyre with a uniform
interior westward flow U;. The boundary currents have a width (U;/
8)'”; in units of |Uj|L with a contour interval (CI) of 0.2
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Y increasing
Q decreasing

FIG. 2. An anticyclonic wind-stress curl generates anticyclonic
motion, with y increasing into the gyre. If eddy ¢ flux divergences
are to balance forcing over a closed streamline then g must decrease
into the gyre if the eddies transfer ¢ downgradient. Thus dg/dy must
be negative.

Numerical experiments (e.g., Veronis, 1966) in which
wind-stress curl is balanced solely by bottom friction
provide confirmation, showing inertial behavior for
reasonable choices of wind-stress curl.

Suppose, instead, that it is hypothesised that poten-
tial vorticity sources are balanced by a transfer of po-
tential vorticity across mean streamlines due to a geo-
strophic eddy field [i.e., D = V:(vq')]. Such lateral
down-gradient eddy transfer cannot (Niiler, 1966;
McWilliams, 1977) equilibrate wind forcing in a baro-
tropic Fofonoff gyre. Consider a region over which
k. curl 7 < 0 (Fig. 2), generating anticyclonic motion;
then in order that sources balance sinks, § vg' - ndl must
be negative, i.e., there must be an eddy flux of potential
vorticity into the gyre to offset the interior sink of po-
tential vorticity. Given an eddy flux v'¢’, the divergent
part of which is, in general, directed downgradient (see,
for example, Marshall and Shutts, 1981), this is only
possible if g, decreases into the gyre, i.e., dgo/do < 0.
Representing the divergent part of this flux by —kVg,,
Eq. (2.5) takes on the form (noting that Vg, = (dgo/

dyo)Vibo):
1 ' _ dq() f

pH f wa dve o+ dl
It is necessary that dgo/dyo < O since the circulation
must have the same sense as the wind-stress curl. A
Fofonoff barotropic gyre cannot now be equilibrated
since, with dgo/dyo negative, inertial boundary layers
cannot be supported; this can be seen most easily by
supposing dqgo/dy{o a negative constant in Eq. (2.7),
which can therefore only support oscillatory solutions.
These considerations explain the qualitative differ-

2.8)
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ences between the steady state numerical results ob-
tained by Bryan (1963) and those obtained by Veronis
(1966). The introduction of a lateral friction into the
Veronis (1966) model destroys his strongly inertial Fo-
fonoff-type gyres, to be replaced by the standing
Rossby-wave train described analytically by Moore
(1963) and demonstrated numerically by Bryan (1963).

It is important to realize that the result dgo/dyo
< 0 follows from the hypothesis that geostrophic eddies
flux potential vorticity down the mean g gradient.
However, there is strong theoretical support for this
conjecture. Systematic effects of eddies on mean flows
are usually (and one is tempted to say always) asso-
ciated with irreversible deformation of instantaneous
g contours. Once this is accepted, the existence of an
enstrophy sink is inevitable and thus the divergent po-
tential vorticity flux must havé a component that is
directed downgradient (for a fuller discussion of this
point, see Marshall, 1984). Thus, unlike McWilliams
(1977) it is preferred not to contemplate the case where
k can be negative, It should not be concluded, however,
that this necessarily implies that almost free solutions
of the type discussed here are unlikely to be relevant
to actual oceanic flows. The problem lies more in the
inability of the barotropic formulation to represent the
dynamics of a baroclinic ocean.

We now go on to demonstrate that almost free so-
lutions, in particular Fofonoff gyres, can be equilibrated
by lateral transfer of g, provided that dynamical effects
associated with vortex stretching are considered. Fur-
thermore, these solutions have many realistic features.

3. Fofonoff gyres in 1v2- and 2'2-layer models

A two-gyre system (subpolar and subtropical) will
be considered, driven by an antisymmetric wind-stress
curl that imparts an equivalent amount of cyclonic
vorticity into the subpolar gyre as it takes out from the
subtropical gyre. The boundaries of the model ocean
are assumed to be rectangular and to extend between
y = —L in the south to y = L in the north and from x
= 0 in the west to x = L in the east (x positive eastward,
y positive northward). (See Fig. 3.)

By symmetry, then, the latitude of the zero wind-
stress curl line y = 0 marks the partition between the
gyres. To emphasise how the role played by eddies in
the lateral redistribution of potential vorticity g can be
accommodated within the context of free-inertial cir-
culation theory, we shall assume that vorticity balance
is maintained entirely by an eddy flux of g between the
gyres. A numerical model in which the instability of
the internal jet plays this role is described in Marshall
(1984). Thus at y = 0 it is supposed that the eastward-
flowing jet is dynamically unstable. This instability
provides the vorticity transfer required to offset the
vorticity forcing, cyclonic to the north, anticyclonic to
the south. Although they can be straightforwardly ac-
commodated into our theory, frictional sinks of g will
not be considered.
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FIG. 3. The geometry of the basin. The latitudes y = +/, mark the
north-south extent of the circulation in the second layer of the 2'2-
layer model.

a. A 1¥-layer model

We first consider the simplest possible extension of
barotropic inertial theory and, instead of the absolute
vorticity defined in Eq. (2.7a), adopt an “equivalent
barotropic” formulation:

q=Vy+By—Fy (3.1

where F = L,”% L, = (g'H/f,®)"/* is the Rossby radius
and g’ the reduced gravity. The term —Fy is a crude
(linearized) representation of the dynamical effects of
vortex stretching associated with changes in layer depth.
The (statistically) steady state is a solution of the
equation _
JW,q)=F -V -(vq) (3.2)

where & is the wind-stress curl and v¢’ are eddy fluxes
of g. The eddy flux divergence of g will be parameter-
ized thus e

V-(vqg")=-V-(kVqg) (3.3)

on the hypothesis that geostrophic eddies transfer po-
tential vorticity down-gradient. The eddy transfer coef-
ficient k is positive but, in general, a function of po-
sition.

Supposing that the flow is in an almost free config-
uration, we look for solutions of the form
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VA + By —FY=q()

and assume that

(3.4a)

qW¥)=Ci¥+qio (3.4b)

where C; and g, are to be determined. To simplify the
notation the subscript (0) indicating “zero order” has
been dropped in Eq. (3.4) and in all subsequent oc-
currences. Since, over each closed streamline, wind-
stress curl forcing is to be balanced by lateral eddy

transfer of g, then from Eq. (2.8)
dg
o C, <0 (3.5)

i.e., C) must be negative. It will be assumed in what
follows that C; is a negative constant so that the so-
lutions we find are a generalization of Fofonoff’s so-
lution. Under the assumption of constant eddy transfer
coefficient kK made in appendix B, the assumed linear
relationship between g and ¢ is only strictly valid for
a very specific form of the wind-stress curl forcing.
However, arguments from statistical fluid mechanics
involving the minimization of enstrophy (Bretherton
and Haidvogel, 1976) or the maximization of entropy
(Shutts, 1981, or Holloway, 1986) suggest that large-
scale flows that arise spontaneously out of chaotic initial
conditions may favor linear g/y relationships. We an-
ticipate, then, that our solutions have relevance when
the wind-stress curl is more realistic, a point that will
be borne out by comparison with the numerical ex-
periments of Holland et al. (1984).

Since by symmetry y = 0 is the partition between
the gyres, the boundary conditions for Eq. (3.4) are

¥ = Oalong the boundary of each gyre
x=0,L
y=—L,0,L

The constant gy is determined by continuity of g
across the northern and southern edges of the two-gyre
system. This requires

(3.6)

BL for the subpolar gyre0 <y <L
dio= [ 3.7

—@L for the subtropical gyre —L <y <0.

This choice leads to a discontinuity in ¢ along the zero
wind-stress curl line separating the two gyres. This
seems appropriate since in response to opposite signed
vorticity forcing, the counter-rotating gyres advect their
g contours and concentrate then into a sharp gradient
at y = 0. This discontinuity is a feature of the observed
potential vorticity field in the upper midthermocline
of the North Atlantic and particularly the North Pacific;
see, for example, the escarpment in g marking the
boundary between the subpolar and subtropical gyres
in Fig. 11 of Keffer (1985). It is also present in the
surface layer of numerical models; see Fig. 7 of Holland
et al. (1984). On this sharp front in the ¢ field, geo-
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strophic eddies are spawned, fluxing ¢ across and down
the mean gradient and offsetting the potential vorticity
source, cyclonic to the north, anticyclonic to the south.
Thus the problem to be solved is given by Eqs. (3.4),
(3.5), (3.6) and (3.7). Solutions for the interior are easily
written down, since here relative vorticity is negligible
and so
By—dio
VI=CTF
giving
= —ﬁ .
Ci\+F
Thus the interior flow will be to the west, supporting
inertial boundary layers of width (JU,|/8)"/? provided
now that only

U

(3.8)

C,+F>0.

The flow, plotted in Fig. 4, for the case C, = —F/2, has
some interesting properties. The inclusion of a repre-
sentation of vortex stretching enables the interior po-
tential vorticity gradient to be reversed so that

i.e., g decreases moving northward into the subtropical
gyre, as it must if the potential vorticity source is to be
balanced by lateral transfer of g. In baroclinic models
this reversal of the g gradient south of the eastward-

FiG. 4. The 1'4-layer solutions plotted from Eqgs. (3.4b) and (3.8)
.with inertial boundary layers included, for the case C; = —F/2: (a)
streamfunction ¥ (CI = 0.4) in units of 8L,2L; (b) potential vorticity
g (CI = 0.2) in units of BL.



1804

flowing internal jet makes the recirculation particularly
susceptible to baroclinic instability.

However, one might speculate that the integral bal-
ance Eq. (2.8) is, in fact, a disjoint balance, with con-
tributions from the wind-stress curl dominating in the
interior, but lateral eddy fluxes dominating in the (un-
stable) internal jet at y = 0. In the present model then,
the g/y relationship of the gyre could be set by eddy
processes in the boundary currents and jets rather than
(as in Rhines and Young, 1982) interior instability.

If the eddies are very efficient (k large) or the potential
vorticity sources weak (7 small) then Eq. (2.8) implies
that
_da__

ay
i.e., g does not change across Y contours, and the so-
lution chooses the uniform q state. This, of course, is
a natural end-state if the potential vorticity sources are
weak and geostrophic eddies systematically erode po-
tential vorticity gradients. In this limit the intensity of
the gyre is independent of sources and sinks [C; = 0
in Eq. (3.8)] and given by

|Ul| -~ ﬁLpz-

For a Rossby radius of L, ~ 30 km this gives a not
unreasonable value for the interior velocity of 2 cm
shforB~2X10"m!'s!,

Although our 1Y layer solution can be no more than
suggestive, it does have contact points with the ocean
and particularly with the mean flows of eddy-resolving
ocean circulation simulations. The upper-layer mean
flow of the Holland et al. (1984) quasi-geostrophic
model is strongly inertial, with eastward flow confined
to a narrow jet and broad, gentle return flows. More-
over, dg/dy < 0 here, with reversed g gradients in the
interior where vortex stretching overrides the planetary
vorticity gradient. Our simple model suggests that dg/
dy is negative in this surface layer in order that potential
vorticity sources can be balanced by the lateral transfer
of g achieved by the geostrophic eddy field. This is
certainly the dynamical balance at work in these weakly
dissipative, highly nonlinear, thermodynamically in-
active eddy-resolving models. To what extent this limit
is an appropriate description of the ocean must await
further detailed diagnostic and modeling studies. Ex-
amination of potential vorticity maps of the North At-
lantic, however, does show strong advective control of
the g contours with dg/dy < 0 in the near surface layers
(see Fig. 4 of McDowell et al., 1982). This is consistent
with our deduction from the circulation integral
Eq. (2.8).

C 0

b. A 2%-layer model

The ideas of the previous section are now extended
to “Fofonoff-like” gyres in a 2%-layer model in which
two active layers of differing densities overlie a deep
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abyssal layer. For convenience it is assumed that both
active layers have the same mean depth H and that the
density jumps Ap between each successive layer (in-
cluding the abyssal layer) are equal. The quasi-geo-
strophic potential vorticity g for each of the two active
layers (n = 1 for the upper layer, n = 2 for lower) is
then given by :

a1 =V +By+ Fr— )
g2 =V + By + F(¥1 — 2¢¥)

where ¥, is the quasi-geostrophic streamfunction, F
= f3/g'H, g' = gAp/po is the reduced gravity, and po a
representative density.

The governing equations for the two active layers
are then

(3.92)
- (3.9b)

Jr,q)=F-V °(W)
J(Y2,q2) ==V + (v2q53)

where F is the curl of the wind stress (which acts only
on the upper layer) and v'q’ are the eddy fluxes of q.
As before, these are parameterized thus

V- (vign) ==V - (k,Vgy) (3.11)

where the k, are positive eddy transfer coefficients.
As before we shall assume that

a1=CwWi1+4qo (3.12a)

q2= G2+ Gao, (3.12b)

with the C| and C; determined by integral constraints
of the form Eq. (2.8). In this case, they are obtained
by integrating over the area enclosed by closed stream-
lines in each layer.

It is not difficult to see how flow in the upper layer
can, through vortex stretching, modify the ¢ geometry
in layer 2, allowing flow around closed g contours. (This
is discussed at length by Rhines and Young, 1982,
where the depth integrated flow is constrained to be
the Sverdrup transport.) Consider the case where the
flow in layer 2 is small (or zero). With y, = 0, the
equation for ¥, reduces to Eq. (3.4) of the 1'2-layer
model, with the previously considered solution Eq.
(3.8). The ¢, is thus given by

q:=By+FY (3.13)

using Eq. (3.9b) and is plotted in Fig. 5. We see that
in the interior ¢, reaches the value zero at y = —/,, say
(in the subtropical gyre). For y > —I, there are closed
g, contours. For y < —/,, on the contrary, the g, con-
tours are open and intersect the boundary. The g, = 0
contour of the subtropical gyre threads its way north-
ward in the inertial boundary layers to meet the side
boundaries at y = 0, along which line it closes itself.
Outside this contour there can only be weak flow in
the lower layer since all ¢, contours intersect the side
boundaries. Within this contour, however, weak forcing

(3.102)
(3.10b)
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FIG. 5. The ¢, contours in the second layer of the 2%2-layer model
if Y, = 0: g, = By + Fh1y, with ¢, given by Eq. (3.8) with C; = 0 and
inertial boundary layers appended; CI = 0.2. Within the ¢, = 0 con-
tour, the ¢, contours are closed; outside the g, = 0 contour, they
intersect the lateral boundary.

is capable of generating strong flow, as in the model of
Rhines and Young (1982).

Thus, in the lower layer there can only be flow for
Iy| < I, where the g, contours are closed. If closed ¢,
contours exist, then, because there are no potential
vorticity sources, Eq. (2.8) takes the form

——@f
0 dll/z szz dl

which tells us that dg./dy» = 0, i.e., ¢, is uniform
throughout the gyre.

Since, unlike in the upper layer, there are no interior
potential vorticity sources capable of maintaining a
discontinuity in ¢, at y = 0, then by symmetry ¢, must
take on a uniform value across both gyres, i.e., ¢ = 0.
Flow will be confined to this region. This is the “ex-
pulsion” of the g, contours to the north and south,
which is spectacularly demonstrated in the eddy-re-
solving calculations of Holland et al. (1984). It is also
a feature of the observed potential vorticity field at
middepths in the main thermocline, where the contrast
of g between the gyres disappears. See, in particular,
Fig. 14 of Keffer (1984), which shows that the entire
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Northern Pacific has a homogeneous value of ¢
stretching from 25°N right up to 65°N at densities (g5
= 27.0-27.3).

In the regions |y| > /», where the ¢, contours intersect
the boundary, ¥, = 0 and Eq. (3.13) defines ¢,, giving,
using Eq. (3.8),

(G2
7)) Cn'ffF

By— Fq,o
YT (Ci+F)

i.e., the g» contours expelled from the uniform ¢, region
increase the ¢ gradients above the ambient gradient §.

Thus, in summary, the problem has been reduced
'lto solving the following equations for ,. In the region
Y < b: :

(3.14)

Vi +By+ Fi:—¥)=Ci1+qo  (3.153)
VY, + By+ Fy1 —2¢2) =0 (3.15b)
and in the region |y| > b:
VA +By—FY =Cii+quo (3.16)
with
8L for y>0
[qlo for y<O.

The latitude } is determined by requiring that ¢, be
continuous at y = +/,. This is equivalent to calculating
the “bowl” within which the circulation takes place,
as will become clear in the N¥2-layer model described
in section 4.

The problem Egs. (3.15), (3.16) with boundary con-
ditions (3.6) can be solved rather easily, since in the
interior the relative vorticity V?y, is negligible. Thus,
immediately from Eq. (3.15), for |y < b;

1

12 =m[3ﬁy_2qm] (3.17a)
1
lﬁz—m[ﬁy(ZF‘F C\)—Fqio].  (3.17b)
The associated (zonal) velocities are
U= o —=3B8/(F+2C)) (3.18a)
dy
Uy=-— 9:72 =—-BQRF+ C)/[FF+2C))]. (3.18b)

It is clear that the flow is westward if F > —2C; (the
condition that enables the flow to be closed by inertial
boundary layers). Since C,; is negative, the flow is
stronger in the upper of the two active layers. In the
limit that the eddies are efficient enough to homogenize
the upper-layer potential vorticity (i.e., C, = 0), U,
= —38/F and U, = —28/F. Recalling that F = L, 7,
we see that the upper-layer flow has amplitude 38L,%.
It is clear from (3.18) that for C, different from 0, but
negative, this amplitude will increase. In appendix A
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it is shown that a requirement for the validity of our
theory is that this velocity be “large” compared with
the Sverdrup velocity.

The above solution is not valid over the whole of
the gyre but only in a latitude band —/, < y < [,. Out-
side this band (that is, in the region |y| > L), ¥» = 0
and the upper-layer solution is obtained from

By— Fy,=Ciw+ quo, (3.19)

the equation which governs the flow in the 1'%2-layer
formulation of the problem. The solution is given by
Eq. (3.8).

The problem of calculating the latitude / is equiv-
alent to that of finding the bowl containing the circu-
lation referred to earlier. Since we require ¥, to be con-
tinuous across y = +h, [, is found by substituting for
¥, from (3.19) into (3.15a) with ¥, = 0 and solving for
y. This gives

__FL
(Ci+2F)’

This shows that when C; = 0, the gyre circulation in
the lower layer extends only half as far from the zero
wind-stress curl line (y = 0) as does the gyre circulation
in the upper layer. This retreat toward the zero wind-
stress curl line with depth will also be apparent in the
NV»-layer model considered in the next section.

To complete the solution, the structure of the
boundary layers that close the flow are now examined.
Our discussion is limited to the eastward jet along y
= (, as the structure of the eastern and western bound-
ary currents is complicated by the need to match so-
lutions across the ¢ = 0.contour. Splitting ¥; into in-
terior ¥;; and boundary layer parts ;3 [where ¥, is the
solution we have already found given by (3.17)] the

Vi satisfy

L (3.20)

Vs + FYas—¥18) = Ci¥is
V5 + F15~— 2¢25) =0.

. The boundary condition Eq. (3.6) implies that y,p
= —,; (which is known) along y = 0. Furthermore,
the condition Eq. (3.7) on gy gives V2,5 = 8L at y
= 0, and the symmetry condition ¢, = 0 gives V{5
= 0 at y = 0. The solution to Eq. (3.21) consists of
exponentially decaying terms with decay scale 1/d sat-

isfying

(3.21a)
(3.21b)

d*—(Cy+3F)d*+ FQC,+ F)=0. (3.22)

This has real solutions (to ensure exponential decay
and hence boundary-layer structure) provided F + 2C;
> 0, which is the same condition obtained previously
to ensure westward flow in the interior [see (3.18)].
Choosing the Rossby radius L, = 30 km, L = 1000
km, and C; = 0, solving Eq. (3.21) with the conditions
on ¥,z and V4,5, detailed above, give the results for
the total y,, = Y,y + ¥, plotted in Fig. 6.
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FIG. 6. The structure of the recirculation south of y = 0 in the 2'-
layer model obtained by solving Eq. (3.22) for the case L, = 30 km
an?/_ C; = 0. Both upper and lower layers have inertial jets of width
~V3L,.

It may be seen that both upper and lower layers pos-
sess inertial jets of similar widths ~V3L,, in agreement
with the theoretical (|U;|/8)"/? scaling if |U] is taken as
3,3L,,2, the interior speed of the upper layer over the
recirculation region || < k. Thus, although the interior
velocities of the upper and lower layers lie in the ratio
of 3:2, the greater extent of the upper-layer gyre implies
velocities in the return eastward-flowing jet more nearly
in the ratio of 2:1. Even with 2!: layers we see the
beginnings of the tendency for a more barotropic flow
in the interior with a more baroclinic eastward-flowing
jet, as noted by Holland et al. (1984).

Unlike the 1%-layer model, flow in the upper layer
now suffers vortex stretching. On a streamline corre-
sponding to a given ¥, the downward displacement
of the interface ¢, — ¥, is less in the eastward-flowing
jet (because ¢, is greater here) than in the interior. Par-
cels of fluid in the upper layer are thus compressed in
the western boundary current and stretched in the
eastern boundary current.

Plan views of the solutions in the two active layers
are plotted in Fig. 7 for the case C; = 0. We see counter-
rotating inertial gyres in each of the two layers, with
the lower gyres confined to a region of uniform g, of
restricted meridional extent. In the 2Y2-layer model
discussed here there is a discontinuity in velocity in
the upper and lower layers along the latitudes y = +5,,
which mark the extent of the gyre circulation in the
lower layer. There is thus a crude representation of a
strong recirculation flanking the interior jet.

It should be noted that because of our choice of g0
[cf. Eq. (3.16)], q; has a discontinuity along the zero
wind-stress curl line. Thus, with C; = 0, g is constant
within each gyre but changes discontinuously across y
= (. This is a fundamental feature of our solution for
it is here that we imagine eddy activity takes place,
enabling the two-gyre system to be equilibrated.

It is interesting that in the lower layer there is no
signature of the boundary currents in the potential
vorticity field; there are fronts in the velocity and tem-
perature fields but not in the g, field. This is a striking
feature of the numerical solutions of Holland et al.



NOVEMBER 1986

JOHN MARSHALL AND GEORGE NURSER

1807

Cc

9

J

+1:0

«10

T

4

|

-8

FIG. 7. A plan view of the 2'-layer solutions, Eq. (3.17), in the

case C; = 0, with inertial boundary layers appended: (a) ¥, (CI
= 0.2); (b) ¥2 (CI = 0.2) in units of BL,’L; (c) ¢1; (d) g2 (CI = 0.2)
in units of BL; (e) ¢; — 2 (CI = 0.2). The flow in layer 2 is confined

(1984). (See in particular the mean ¢ and g fields in
Fig. 7 of that paper, which show pools of uniform g
whose meridional extent progressively shrinks to the
line of zero wind-stress curl on moving to deeper lay-
ers.) Moreover, beneath the surface layer the gyres
equilibrate to the same uniform value of g.

Further confirmation of these gross features of the
potential vorticity field is provided by the diagnostic
study using the Gulf Stream *60 hydrographic survey

to the region of uniform ¢,, [y| < b.

presented in Bower et al. (1985). In the near-surface
layers the Gulf Stream is seen to act as a barrier marking
the boundary between high g water to the north and
low g water to the south. Deeper down, tracers (O, and
q) are uniform across the gyre boundary.

4. An N'2-layer model

As a straightforward extension of the 2'2-layer model
of section 3 with two active layers, we now consider N
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active layers overlying a motionless absyssal layer to
study the vertical structure of the circulation.

We recall that in the 2%:-layer model, variations in
the thickness of the surface layer give rise to regions of
closed g contours in the layer immediately beneath
within which eddy processes homogenize ¢. Similarly,
in an N%-layer model, vertical displacements of the
interface between the (n — 1)st and nth layers close off
g contours in the nth layer. Thus, if as before, it is
assumed that where g contours close in subsurface lay-
ers, g equilibrates to a uniform value across both sub-
tropical and subpolar gyres, i.e., g, = 0, then the fol-
lowing picture emerges.

Figure 8 shows a north—south section across the sub-
tropical gyre, which will be the region considered here
(the subpolar gyre is similar but with the interfaces
sloping upward). The lines y = —/, are the latitudes at
which g, reaches zero, its value at the zero wind-stress
curl line; these mark the southern boundary of the
region of homogeneous g within which there is circu-
lation. Thus, for example, the downward displacement
of the interface between the second and third layers
commences at y = —/, and so the line y = —1;, along
which squashing of the third layer raises the value of
g3 to zero, is displaced northward of y = —/,. Similar
arguments hold in the deeper layers. The region of ho-
mogeneous g thus recedes ever further northward
moving to deeper layers.

The southern bound of the circulation and the ve-
locities in each of the layers can easily be deduced. Let
us consider again the case where the density differences
between the layers and the layer thicknesses are iden-
tical. For simplicity it is supposed that the potential
vorticity in the surface layer is constant; the shape of
the interface between the surface layer and the layer
beneath is therefore determined, as is the characteristic
shear (AU), = —B/F, the velocity difference between
the first and second layers. The velocities in subsurface
layers can be calculated in terms of this characteristic
shear; thus if g, is to be constant this implies an inter-
face tilt between layers 2 and 3 twice that of the interface
tilt between layers 1 and 2. The shear across the second
interface is therefore —28/F. Hence, where the second
layer is the lowest layer in motion it has a velocity
—2f/F and the surface layer —38/F. As shown in Fig.
8, this process continues as we proceed downward and
poleward. If there are N active layers there are N — 1
discontinuities in the surface layer across which the
velocity increases discontinuously, moving poleward
to the zero wind-stress curl line.

The latitudes y = —I, can be found as follows. The
potential vorticity gradient in the nth layer south of
the latitude y = —/,, where there is no flow, is

W= - FAU), =18
since (AU), is the velocity difference across the (n
— 1)st and #nth layers given by

’
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FIG. 8. A north-south section across the subtropical gyre showing
the vertical structure of the circulation in the N%-layer model. The
latitudes /, mark the southern extent of the circulation in the layer
n, and the numbers indicate the flow speed (westward) in units of
BL,2. The curve D is the “bow!” within which the circulation is con-
fined, given by Eq. (4.3). In the vicinity of y = 0 we expect an eastward-
flowing jet where the isopycnals begin to slope upward from south ~
to north.

(AU), = (n= 1YAD), = (2= D).

Thus
Gn=—Plp-1 +nB(y + ln-1)

for —/,-; <y < —l,and

. a»= By
fory < —I,_,.
The latitude I, is determined by noting that g, = 0:
=00 i =L
giving
L
l,= P 4.1)

This is the generalization of the 2'%:-layer result Eq.
(3.20) when C, = 0.

The depth of the bowl within which the circulation
is confined, D, = nH, is given by
_LH,

In

D, “4.2)
using Eq. (4.1).

The physics which leads to this striking result is very
simple. Over the subtropical gyre the thickness of the
surface layer increases linearly moving northward in
order that f/A can remain constant and equal to the
value of g, at the southern edge of the subtropical gyre:
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_ B(y+ L)H,
Jo

where Ah, is the deviation of the upper layer depth
about its undisturbed thickness H,. Thus A#, is always
positive: vortex tubes become stretched in the surface
layer as the zero wind-stress curl line is approached.
However, the net vortex stretching over a column ex-
tending from z = —D to the surface must sum to zero,
and it is this that determines the depth of penetration
of the circulation. In subsurface layers that are in mo-
tion, g, must remain constant and equal to the value
of g at y = 0, requiring that

Ah,= ByH, for

Jo

Thus Ah, is always negative; this compression (relative
to the equilibrium layer thickness) of each subsurface
layer increases moving southward.

So the requirement that the total vortex stretching
be zero

Ahy for —L<y<0

-, <y<0.

> Ah,=0
implies that
N
HB(y+L)+ 2 H8y=0
n=2
giving

—LH,

N
D=2Hn=—y— for —L<y<0. (4.3)
n=1

This is an alternative derivation of the depth of pen-
etration of the circulation deduced from a slightly dif-
ferent perspective. It is worthy of note that the above
derivation is valid for layer thicknesses H,, not all equal;
the result is completely independent of the stratifica-
tion. It may be shown that, moving from a layered to
a continuously stratified model, the shape of the bowl
changes from a series of steps where Eq. (4.3) is valid
only where the stepping occurs, to a smooth hyperbola
where Eq. (4.3) holds everywhere.

This hyperbolic plunge cannot continue indefinitely,
and it is natural to inquire as to the maximum depth
of penetration of the bowl. The crucial parameter in
our simplified model is the line [, = L/n, which marks
the southern boundary of homogenization in the nth
layer. Consider a layer that is so deep that /, lies inside
the eastward-flowing inertial jet at y = 0 of width (|U;|/
B)'/2. Here relative vorticity makes an important con-
tribution toward maintaining a uniform value of g,
allowing a thinning of the layers above and the eventual
bowing upward of interfacial surfaces (cf. Fig. 6 in the
2lh-layer case). The “burrowing” of the bowl, then,
ceases in the nth layer where

é ILJI_ll/z
~(%)
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Suppose that the width of the inertial jet is a function
of the U; attained at its eddy in the upper layer, given
by

1
|U1| = En(n + l)ﬁLpzs

then substitution into the above expression gives
VaL\ 2
n~ .
(Z.)

Taking /, = 30 km and L = 1000 km, a crude estimate
of the north-south extent of the recirculation gives »
~ 6. For a value of H; ~ 200 m this implies a max-
imum depth of penetration of ~1200 km. This com-
pares well with the value of 1500 m usually quoted
(e.g., Holland et al., 1984) for the depth of the circu-
lation in the Pacific. The value predicted by the theory
is, however, quite sensitive to our choice of L, and L
so the theory does not exclude the possibility of the
circulation reaching the ocean floor, if less marked
stratification and/or larger recirculations are supposed.

It is interesting to compare the vertical structure of
our solution, Fig. 8, with the vertical structure of the
recirculation revealed by the section (Fig. 9) crossing
the subtropical gyre of the North Atlantic.

Figure 9 shows property sections along 50°W cross-
ing the warm water subtropical gyre taken by Atlantis
in 1956. Figure 9a is the potential density as a function
of depth and Fig. 9b the potential vorticity as a function
of potential density. The southern edge of the eastward-
flowing Gulf Stream is marked by the vertical dotted
line (for a detailed discussion, see McCartney, 1982).

The isopycnal surfaces dip down toward the southern
edge of the stream at 37°N, turning sharply upward
again at the latitude of the Gulf Stream. The region of
flow clearly recedes rather rapidly to the axis of the
Gulf Stream with depth. The bowl, although rather
blurred, is nevertheless clearly evident and is not unlike
our analytic construction (compare with Fig. 8).

The large isopycnal separation centered on ¢4 = 26.5
is the 18° mode water of anomalously low potential
vorticity. The shading in Figure 9b has been chosen to
emphasise the low potential-vorticity water. The broad
spatial distribution of the ¢ field is in accord with that
deduced from our circulation integrals: low g in the
near-surface layers of the subtropical gyres, higher, but
fairly uniformly distributed values of g beneath. It
should be pointed out that the low potential vorticity
waters in the near-surface layers of the subtropical
North Atlantic are almost certainly formed by deep
wintertime convection, resulting in regions of reduced
stratification, which are thermohaline in origin. This
reminds us that our model is almost diagnostic: once
the g field has been set (either by the dynamics or ther-
modynamics) then, for given boundary conditions, the
flow characteristics are determined. In the present case
there are important potential vorticity sources due to
diabatic processes that must be taken into account in
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addition to wind-stress curl forcing in any complete
theory. These through (2.5), are also important in set-
ting the g/y relationship of the recirculating waters of
the subtropical gyre, where convection is an important
source of low g waters. '

The vertical structure of the circulation revealed in
Fig. 8 also provides an interesting perspective from
which to view the layer quasi-geostrophic numerical
models. It would suggest that many layers are required
at shallow"depths to resolve the hyperbolic plunge of
the bowl. The numerical model of Holland et al. (1984)
has eight layers, most of them in the upper few hundred
meters, which seem to resolve the rapid retreat of the
circulation to the zero wind-stress curl line with depth
fairly well. The model of section 3, of course, has only
two layers and the rectangular hyperbola is poorly re-
solved as a discontinuous jump.

5. Discussion

In this study we have considered the consequences
for the ocean circulation of supposing that quasi-geo-
strophic potential vorticity is conserved along stream-
lines of the flow. Following Niiler (1966) the indeter-
minacy of purely inviscid theory has been removed by
a consideration of the necessary condition that poten-
tial vorticity sources balance sinks when integrated over
a closed streamline.

From the hypothesis that potential vorticity sources
are balanced by a lateral eddy transfer of potential vor-
ticity (achieved by the geostrophic eddy field), it follows
that in layers exposed to surface forcing dg/dy < 0,
whereas beneath dg/dy = 0 with g constant.

Once these functional relationships are set, solutions
for the zero-order free circulation can rather readily be
found. They have a close affinity to Fofonoff’s (1954)
solutions and, indeed, are best regarded as generaliza-
tions of his barotropic solutions to baroclinic flow. A
series of inertial gyres is obtained that progressively
diminish in amplitude with depth and recede to the
line of zero wind-stress curl with depth.

In addition to their academic interest we believe that
there is evidence from modeling and, more to the point,
observations that these solutions are very relevant to
gyre-scale circulation in middle latitudes. This is be-
cause large fractions of the subtropical gyres are made
up of recirculating waters in which parcels of fluid cir-
culate many times before having their potential vor-
ticity significantly changed. In other words, there is
strong advective control of the g contours with close
coincidence of the ¥ and ¢ contours.

The solutions we have found are, of course, inac-
cessible to linear theory. Linear theory puts the em-
phasis on the deviation of ¢ from a prescribed but
largely unknown ¢ field. The other asymptotic limit
considered here, ¢ = g(¥), deserves equal attention.
Indeed, it is possible that a more profitable approach
would be to “linearize” about the present free mode,
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zero-order solutions rather than a state of rest (g = 8y).
The Sverdrup mass transport then appears at next order
as a direct response to potential vorticity sources and
sinks. This first order correction will be discussed in a
subsequent paper.

In conclusion, it is hoped that this study will provide
an interesting further example of how a focus on po-
tential vorticity can bridge the gap between observa-
tions and theory. As more observations become avail-
able, particularly those that enable the relative vorticity
contributions to g to be evaluated in boundary currents
and jets, more quantitative tests of our theoretical
speculations can be made.

APPENDIX A

A Consideration of the Scaling Parameter ¢

Here we seek to justify the assertion, made in section
2, that the fundamentally free nature of a circulation
is reflected in the choice of small ¢ in

JW,q) =G (AD)
if Gis
G ~ O(BIVYl). (A2)
Equations (A1) and (A2) imply that
7, )l
~Qf 2222 A3
‘ O( BIvY] ) )

The quantity ¢ can be interpreted in the following way.
In steady flow a particle must move a distance ds in
order that its potential vorticity be changed by an
amount dg where

_ Ivyldq
G, g)l°

If the potential vorticity gradient is dominated by 3
then this (meridional) distance is ds; given by

ds

dq
dsg~—.
Sﬂ ﬂ
The ratio
dss (¥, 9)|
4 _ 1AV, 9 A4
ds BV (A4)

is the small parameter e. Thus ¢! is a recirculation
index, a measure of the number of circuits of length
O(L) a fluid parcel must make in a nearly free flow
before it loses an amount of vorticity SL (which in
linear theory is lost in one pass through the frictional
boundary current).

Given (A3), e can be evaluated for a wind-driven
barotropic Fofonoff gyre, where eddy flux divergences
are unimportant and J(y, q) = k - curl 7/pH. If the zonal
velocity is u and meridional velocity v, then
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since v = k- curl 7/pH is the Sverdrup velocity. When
[v] < |ul,

1
|2l

and Niiler’s (1966) definition of e is recovered as the
ratio of the Sverdrup velocity scale to the zonal flow
in the interior of a Fofonoff gyre.

APPENDIX B ’

.The Determination of a Wind Stress Consistent with
a Zero-Order Linear ¢—y Relationship in a Gyre
Equilibrated by Downgradient Eddy Transfer of ¢

Our objective is to calculate a wind stress consistent
with the linear g-y relationship (¢ = Ciy — BL; C,
< 0) assumed at zero order in a Fofonoff gyre equili-
brated by downgradient lateral eddy transfer of g. A
1%.-layer quasi-geostrophic model is adopted for the
subtropical part of the circulation shown in Fig. 3 (—L
<y<0;0<x<L).

Given that the free component of the flow is of Fo-
fonoff form (see Fig. 1), large potential vorticity gra-
dients are confined to the boundary currents, so the
major contributions from eddy fluxes in the integral
balance (2.8), rewritten below for convenience,

1 qu f
R = }CV
pH \l/o o

can be assumed to occur in these boundary regions.
In order to evaluate the rhs of (B1) an expression
for the velocity in the boundary currents must be found.
It can be shown (following, for example, the Bernoulli
integral approach of Niiler, 1966) that the northward
velocity in the western boundary current is, dropping

zeroes,
v =(F+C)'"2(r— ) (B2)

where ; is the value which the streamfunction takes
in the interior at a given latitude, and y is the stream-
function in the boundary current at the same latitude.
Equation (B2) is also appropriate for speeds in northern
and eastern boundary currents. The above expression
is intuitively reasonable, since the interior v is negligible

= |Cl|fk"o'd] (B1)

and the width of the boundary current is (F

+ C)'~2,
The circulation integral (B1) can now be evaluated.

" The eddy flux across a streamline ¢ in the western |

boundary current is

ICilk | v, »)dy

Yentry

where Venyy is the latitude at which the streamline enters
the boundary current and is equal to the latitude at
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which the streamline traverses the interior. Reexpres-
sion of the integral in terms of \0 yields

|C1|kf v(¢,¢,) Y iy,

ayr
where Y is the value of the streamfunction in the in-
terior at the northern edge of the basin, y = 0. From
Eq. (2.3)

dy _ F+ Cl

by B

and substituting for v from (B2), the integral takes the
form

YN
BIKICI(C, + FY™ L V=V

- ﬁkl Cll(C1+ FY Py — )P

By symmetry this is equal to the eddy flux into the
gyre across the streamline in the eastern boundary cur-
rent; the flux in the northern boundary current is given
by

L
Kl fo o, ¥w)dx = ICIIL(C, + F) (b — ).

Thus the total eddy flux into the gyre across a stream-
line Y is

KCI{B™(Ci + FYP(Yn— ) + L(C + F) 2Yn— )}

Expressed as a function of yeny, the latitude coincident
with the streamline in the interior, we have (p and H
are as in §2)

kB|C,|
f dl“(c +F)1/2{yentry+Lycntry} (B3)
From (B3) a 7 can be calculated. For simplicity, it
is supposed that the wind stress is zonal and indepen-
dent of x: 7 = {7(y), 0}. Then (B3) implies that a wind
stress satisfying

- 2
{7(0)— 70} = R (y— Y

C+FA\D z) B9

,BHL

is indeed consistent with a linear g—y relationship.

Thus a wind-stress curl that varies linearly with y
can equilibrate an equivalent barotropic Fofonoff gyre
in the face of lateral eddy transfer of g. It has the same
form as that obtained by Niiler (1966) for the barotropic
Fofonoff gyre with bottom friction.
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