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Abstract 

Numerical experiments are presented which explore the dependence of the scale and 
intensity of convective elements in a rotating fluid on variations in external parameters in a 
regime relevant to open ocean deep convection. Conditions inside a convection region are 
idealized by removing buoyancy at a uniform rate B from the surface of an initially 
homogeneous, motionless, incompressible ocean of depth H with a linear equation of state, 
at a latitude where the Coriolis parameter  is f .  The key nondimensional parameters are the 
natural Rossby number Ro* = ( B / / f 3 n 2 )  1/2 and the flux Rayleigh number R a f =  
BHa/(x2•), where K and v are (eddy) diffusivities of heat and momentum. Ro* is set to 
values appropriate to open ocean deep convection (0.01 < Ro * < 1), and moderately high 
values of Raf  (104 < R a / <  1013) were chosen to produce flows in which nonlinear effects 
are significant. The experiments are in the 'geostrophic turbulence' regime. 

As Ro * and Raf  are reduced the convective elements become increasingly quasi-two-di- 
mensional and can be described as a field of interacting 'hetons'.  The behavior of the flow 
stat is t ics--plume horizontal length scale L, speed scale U and buoyancy scale G, and the 
magnitude of the mean adverse density gradient measured by the stratification parameter H 
- - a r e  studied as a function of Ro * and Raf.  Physically motivated scaling laws are 
introduced, which, when appropriate,  employ geostrophic and hydrostatic contraints. They 
are used to interpret the experiments. In the heton regime, in which the motion is 
predominantly geostrophic and hydrostatic, the observed scales are sensitive to moderate 
variations in Ro * and large variations in Raf.  We demonstrate broad agreement between 
our numerical experiments and previous laboratory studies. The lateral scale of the 
convective elements and the (adverse) stratification in which they exist adjust to one another 
so that N H / f L  = 1; the horizontal scale of the hetons is thus controlled by a pseudo Rossby 
radius based on the unstable stratification parameter  N, the scale at which the overturning 
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forces associated with N are balanced by the counter-overturning forces associated with 
rotation. 

1 .  I n t r o d u c t i o n  

In this paper we present numerical experiments with a non-hydrostatic convec- 
tion model in which a neutral, rotating ocean is subject to horizontally uniform 
buoyancy loss at its upper surface. We attempt to understand, and rationalize with 
physically motivated scaling laws, those processes that control the scales and 
intensity of the ensuing convection. The study is motivated by the desire to 
elucidate the character of rotationally modified convection in a parameter  regime 
relevant to open ocean deep convection, an important mode of deep water mass 
formation and a key component of the global thermohaline circulation of the 
ocean. Our results have relevance to the 'convective elements' or 'plumes', regions 
of upwelling and downwelling of O(1 km) width that stir newly dense water down 
to great depth. They are also pertinent to recent laboratory studies of rotating 
convection by Fernando et al. (1991) (henceforth FCB), Boubnov and Golitsyn 
(1986, 1990) and Chen et al. (1989). 

Our experiments numerically explore convection in a rotating, neutral fluid at 
high Rayleigh number and low natural Rossby number, with ocean convection 
specifically in mind. They are analogous to, but carried out in a different parame- 
ter regime from, the 'large eddy' simulations of the atmospheric boundary layer 
reported by, for example, Mason (1989). Oceanic convection is in a distinctly 
different parameter  regime from such atmospheric convection. The natural Rossby 
number Ro * = L r o t / H  (Maxworthy and Narimousa, 1991, 1994; Jones and Mar- 
shall, 1993), a ratio comparing the vertical scale Lro t = ( B / f 3 )  1/2 at which convec- 
tion comes under the influence of the Earth's rotation, to the depth of the 
convective layer H, is large in the atmosphere but small in the ocean. Here  B is 
the buoyancy flux extracted at the ocean's surface and f is the Coriolis parameter.  
Typical vertical heat fluxes achieved by a population of convective elements in the 
atmospheric and oceanic boundary layer are comparable. However, the vertical 
buoyancy flux in the atmosphere exceeds that in the ocean by many orders of 
magnitude. The ratio of the buoyancy fluxes in the two fluids for a given heat flux 
is 

Batmos PwCw 
- -  - - -  ( 1 )  

Bocean pAOlCAOA 

where p is the density, c is the specific heat, 0 A is a typical air temperature,  and a 
is the coefficient of thermal expansion of water, and subscripts W and A represent 
water and air, respectively. 

Inserting typical values (Pw = 1000 kgm -3, PA = 1 kgm -3, a = 2 × 10 -4 K -1, 
c w = 4000 Jkg-aK -1, c A = 1000 J k g - l K  -1, and 0 a = 300 K), we find that atmo- 
spheric buoyancy fluxes are 105 times greater than oceanic buoyancy fluxes, giving 
an Lro t of 100 kill or more in the atmosphere. Typical vertical scales are set by the 
depth of the troposphere, H = 10 km, giving Ro * = 10; the convection 'hits the 
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ceiling' before it feels the effect of rotation. (We are considering here the effect of 
rotation on the individual convective elements themselves; convective complexes in 
the atmosphere will be organized, however, on the Lro t scale.) In the ocean, by 
contrast, where the buoyancy forcing is much weaker, L r o  t --~ 500 m and the depth 
of deep-reaching convection is H = 2 kin, so that Ro* = 0.25 and rotation cannot 
be ignored. Oceanic convection, therefore, is in a somewhat unfamiliar, but 
fascinating parameter regime and is studied here by numerical experiment. 

High-resolution experiments are presented to investigate the scales and inten- 
sity of the convective elements on the external parameters of the system. Sensitiv- 
ity of the flow to the natural Rossby number Ro* and the flux Rayleigh number 
R a f =  BHn/(K2v) is probed by varying the rotation rate, diffusivity, and total 
depth of the system. As described in Section 2, Ro* is an especially useful 
nondimensional parameter because it measures the importance of rotation in a 
convecting system and is independent of diffusivity of momentum and heat. We 
attempt to understand, to the extent that it is possible, the observed flows in terms 
of variations of Ro * alone, because we believe that at sufficiently high Rayleigh 
number, Ro * becomes the controlling nondimensional parameter. Using molecu- 
lar values or diffusivity of temperature and momentum in water (K ~ 10 -7 m 2 s- 1, 
v --~ 10 -6 m 2 s-l),  we find that the flux Rayleigh number is approximately 10 27, a 
very large number, indicating that the flow must be highly turbulent. Flows with 
such high Rayleigh number cannot be simulated with computers available at 
present (Raf-~ 10 t3 is achieved here) and we must parameterize the turbulent 
mixing process. We choose to employ Laplacian friction and diffusivity parameteri- 
zations (with Austausch coefficients representing the transfer of momentum and 
heat by subgrid-scale turbulent processes) rather than a more sophisticated turbu- 
lence closure scheme. The simplicity and analytical amenability of such an ap- 
proach makes it attractive. Perhaps more importantly, it allows us to define 
relevant nondimensional parameters unambiguously and makes possible direct 
comparisons of our numerical simulations with the laboratory experiments men- 
tioned in the first paragraph. 

In this contribution we draw together, and attempt to present in a rational way, 
the key scaling laws for the convective elements, and the physical assumptions on 
which they are based. In particular, we exploit, when appropriate, hydrostatic and 
geostrophic constraints which lead to scaling laws which can be described by 
simple formulae. We find broad quantitative agreement between our numerical 
experiments and the afore-mentioned laboratory studies. Use of a numerical 
model, however, enables us to probe and describe in more detail the physical 
balances which control the structure and intensity of rotationally controlled con- 
vection. 

2. Nondimensional parameters 

The physical system of interest here is characterized by a small number of 
external parameters--the total fluid depth H, the imposed surface buoyancy flux 
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B, the Coriolis parameter  f (twice the rotation rate), the kinematic viscosity 1, and 
the diffusivity of buoyancy K. This system can be completely described by three 
nondimensional parameters. We highlight the importance of the 'natural Rossby 
number '  Ro * of Maxworthy and Narimousa (1991), 

( B t l / 2  

R o * =  I f--UH-5 ) (2) 

which is a measure of the importance of rotation and is independent of the 
diffusivities. The complementary parameter  is the flux Rayleigh number, 

BH 4 
Rar  - (3) K2/.~ 

which is independent  of rotation and measures the influence of diffusion of 
momentum and buoyancy. The third nondimensional parameter  is the Prandtl 
number, 

Pr = v /K (4) 

a measure of the relative strengths of diffusion of momentum and buoyancy. Here  
we suppose that Pr = 1. 

In the classical literature on rotating convection, Ro * is not employed and the 
system is described in terms of Ra /  and the Taylor number, which depends on 
both f and the diffusivity: 

2 Ta( ) 
Here,  however, we choose to rationalize our experiments in terms of (Ra/ ,  Ro * ) 
because this pairing produces a tidy division of the external parameters between a 
viscous-diffusive parameter  and a rotational parameter.  Such a division is espe- 
cially useful for application to the ocean, where poorly known eddy diffusivities are 
more relevant to the behavior than molecular diffusivities. Appropriate values of 
Raf  and Ta for oceanic deep convection are difficult to determine, but Ro* is 
easy to calculate. At the site of deep convection in the western Mediterranean Sea, 
H =  2000 m, f - -  10 - 4  S -1 ,  and B -- 4 X 10 - 7  m 2 s -3 (Leaman and Schott, 1991), 
which implies Ro * = 0.3. If we take 'deep'  convection to encompass regimes from 
Labrador Sea to Weddell  Sea deep water formation, then relevant values for H 
range from about 1000 m to 4000 m, B ranges from perhaps 10 -7 m 2 s -3 to 
perhaps 5 × 10 -7 m 2 s -3, and f ranges from its Mediterranean value up to 
1.5 × 10 -4 s -1. Therefore  values of Ro * from about 0.01 to 1 are most relevant to 
oceanic deep convection. 

Boubnov and Golitsyn (1986, 1988, 1990), Boubnov and Ivanov (1988), Chen et 
al. (1989), Fernando et al. (1989) and FCB conducted experiments in which a 
rotating tank of water was heated uniformly from below, and aspects of the flow 
and temperature fields of the resulting convection were measured. Nonrotating 
experiments were also conducted. Boubnov and Golitsyn (1990) employed a regime 
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diagram, reproduced by FCB, which divides the Ta-Raf  plane into regions which 
are, for increasing flux Rayleigh number and natural Rossby number: the conduc- 
tion regime, in which diffusion suppresses the convective instability; a regime of 
regular structure, in which convection takes the form of uniform cells; a geostrophic 
turbulence regime; a fully turbulent regime. With a flux Rayleigh number Raf in 
the range of 2 x 1012 to 9 x 1012 and Ta of 10 9 to 2 x 1011, FCB's rotating 
experiments are in the geostrophic turbulence regime. The natural Rossby number 
was not employed by FCB or Boubnov and Golitsyn (1986, 1990), but we can 
deduce from their published parameters that Ro * ranged from 0.0006 to 0.033 
(FCB) and from approximately 10 -4 to approximately unity (Boubnov and Golit- 
syn). 

Postulating that diffusive effects are negligible in the high flux Rayleigh number 
regime of their laboratory experiments, FCB deduced from dimensional considera- 
tions that, in the nonrotating case, scales for speed ( U m  s-~), buoyancy (G m 
s-E), and length (L m) are 

Uno n = (BH)  1/3, Gno n = (B2 /H)  1/3, 

and for the rotating case they are 

Lno n = H  (6)  

Uro t = (O//f)  1/2, Gro t = (Of)  1/2, Lro t = ( B / f  3) (7)  

Golitsyn (1980) also derived the same rotating scaling for velocity based on 
consideration of the dissipation of energy by the convecting system. 

The scales in (6) and (7) were discussed at some length by Jones and Marshall 
(1993). It is useful to note that Urot//Unon = RO *1/3, Grot/Gno n = RO *-1/3, and 
Lrot/Lnon = RO*, so that the rotational and nonrotational scales converge at 
Ro* = 1. 

FCB showed that the above scalings for U and G are appropriate for the 
nonrotating and rotating (low Ro * ) cases. In the rotating case, they also found that 
these quantities were independent of depth and time, at least at distances greater 
than 5Lro t from the boundary where a heat flux was imposed. The characteristics 
of the convection studied by FCB correspond to the 'geostrophic turbulence' 
regime of Boubnov and Golitsyn (1990). The experiments of Boubnov and Golitsyn 
(1990) also showed that the velocity scale was relatively insensitive to f in the fully 
turbulent regime. 

Similar experiments were carried out at small Ro * by Maxworthy and Nari- 
mousa (1991, 1994) and Brickman and Kelley (1994a,b), and numerically by Jones 
and Marshall (1993) and by Raasch and Etling (1991). Focusing on the first stage 
of the flow, Maxworthy and Narimousa (1994) found that velocities scaled with 
Urot, and Jones and Marshall found velocity and buoyancy consistent with the 
rotational scaling (7). Raasch and Etling conducted three numerical experiments 
(0.005 ~< Ro * ~< 0.065) in which a turbulence closure scheme was used to parame- 
terize subgrid-scale processes. They found that the vertical velocity had a depend- 
ence on f consistent with the rotational scaling, but the statistics for horizontal 
speed and buoyancy were much less dependent on f. 
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There remain a number of unresolved issues, however, which motivate the 
present study. There is no clear understanding of the observed scales of the 
convection; Boubnov and Golitsyn (1990) did not find that L = Lrot, and instead 
presented an empirical scaling law dependent on the Rayleigh number and Taylor 
number, but without physical motivation. FCB did not explicitly discuss the 
observed horizontal scale of the elements that occupy the body of the convecting 
fluid. In numerical experiments, such as those of Jones and Marshall (1993), the 
finite and rather coarse resolution of the numerical grid necessitates the use of 
eddy viscosities and diffusivities, which may play a role in determining the scale of 
the modeled convection. 

3. E x p e r i m e n t a l  procedure  a n d  observed  reg imes  

3.1. The numerical experiments 

3.1.1. Numerical model description 
The incompressible, Boussinesq, Navier-Stokes equations were integrated using 

a numerical model describing the evolution of a rotating, initially unstratified 
ocean. The model is a discretization of the following system of equations: 

Du 1 0p' [ ~2U £q2U I 02U 
- -  + fu  = v . (  a - ~  + J - -  ( 8 a )  Dt Po Ox ~y2 + VVaz2 

- -  + - -  - -  + f u  = v .  - -  + - -  - -  (8b) 
Dt Po Oy 0X 2 0y 2 + b'Voz2 

ow lo w 
- -  + - - - -  + b  = v H I  + - -  ( 8 c )  Ot P0 az ~ ~ ]  VVaz 2 

au Ov aw 
- -  + - -  + - -  = 0 ( 8 d )  
ax Oy Oz 

DTDt ( ~2U O2T]. ()2T 
- -  K V  ~)Z 2 K h Ox---5+T2] + - -  (8e) 

where (u,v,w) is the velocity in a Cartesian (x,y,z) coordinate system, t is time, P0 
is the initial (uniform) density, p' is the deviation from the initial hydrostatically 
balanced pressure field, b = gP'/Po is the buoyancy (as in the previous section), T 
is the temperature, and 

D a a o o 
+ u - -  + v - -  + w - -  (9) 

Dt 0t ax 0y az 

is the substantial derivative. Density was assumed to be a linear function of the 
temperature: 

p =po[1 + a ( T -  To) ] (10) 
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Table 1 
Standard parameters 

233 

Parameter Symbol Value 

Thermal expansion coefficient a 2.1 x 10-4 o C- 1 
Specific heat c~, 3900 J kg- i o C- i 
Gravitational constant g 9.8 m s-2 
Reference temperature T O 12°C 
Reference density Po 1000 kg m 3 
Surface heat flux Q 800 J m -2 s i 

where a is the coefficient of thermal expansion and T O is a reference tempera ture  
typical of observations during deep convection in the Western Mediterranean 
(Leaman and Schott, 1991). (See Table 1 for parameters .)  The equations were 
integrated on a staggered grid using the 'pressure '  method of Harlow and Welch 
(1965), with a time-differencing scheme consisting of alternate Euler-backward and 
Euler-forward steps. The domain was periodic in both x and y. The vertical 
velocity was set to zero at the surface and bot tom boundaries, and the vertical heat 
flux was set to zero at the bot tom boundary. The numerical model has been 
described in more detail by Brugge et al. (1991). 

The fluid was cooled by decreasing the tempera ture  in the top level of the 
domain at each time step at a rate proportional to the surface heat loss. The 
cooling was uniform on the large scale, but an additional term which varies 
randomly from gridpoint to gridpoint was added to supply a perturbat ion to 
initiate the convective instability. The amplitude of the random term was half the 
value of the mean cooling. 

The numerical experiments were performed in a square domain that was 3200 
m on a side, consisting of either 128 gridpoints at intervals of 25 m or 64 gridpoints 
at intervals of 50 m (see Table 2(a)). Most of the experiments had a vertical grid 
spacing of 50 m, but coarse vertical resolution was employed in simulations of 
particularly deep oceans. Details of each run can be found in Table 2(a). Some 
calculations (see Table 2(b)) were repeated at different spatial resolution to 
demonstrate  that key statistical measures of the ensuing convection did not change 
when the resolution was changed. Two of the runs in which the plumes were 
relatively wide were also repeated in larger domains (16 km by 16 km; see Table 
2(b), Runs d and e). They showed that the key statistics were insensitive to the size 
of the domain. In all experiments, a t ime step of approximately 60 s was employed. 
A typical high-resolution experiment took about 3 h of CPU time on a Cray Y-MP 
for 24 h of simulation time. 

3.1.2. External  and nondimensional  parameters  
Parameters  for the experiments are listed in Table 2. The values of f ,  H,  and B 

were chosen both to encompass the oceanographically relevant regime and also to 
elucidate the dynamics of rotationally dominated convection. The natural Rossby 
number  Ro * ranged from 0.0025 to 0.32, and the horizontal flux Rayleigh number  
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Table 2(a) 
External parameters, numerical experiments 

Run f 4 ~ / f  H (KH, X V) t~ ,  RO* Raf  

Ax = 25 m, Nx = 128 
1 1.00 34.9 2 (0.1, 0.1) 96 0.32 6.4 × 109 
2 2.52 13.9 2 (0.1, 0.1) 48 0.08 6.4 x 109 
3 4.00 8.7 2 (0.1, 0.1) 48 0.04 6.4 X 109 
4 10.08 3.5 2 (0.1, 0.1) 72 0.01 6.4 × 109 
5 4.00 8.7 1 (0.1, 0.1) 48 0.08 4.0 X 108 
6 10.08 3.5 8 (0.1, 0.1) 168 0.0025 1.6 x 1012 
7 4.00 8.7 2 (0.01, 0.01) 48 0.04 6.4× 1012 
8 4.00 8.7 2 (0.1, 0.1) 48 0.04 6.4 x 106 
9 4.00 8.7 2 (1, 0.1) 48 0.04 6.4 x 106 

10 10.08 3.5 2 (1, 0.1) 60 0.01 6.4 x 106 
11 10.08 3.5 4 (1, 0.1) 84 0.005 1.0 x 108 
12 1.00 34.9 2 (5, 0.1) 72 0.32 5.1 x 104 
13 4.00 8.7 2 (5, 0.1) 84 0.04 5.1 x 104 
14 10.08 .3.5 2 (5, 0.1) 180 0.01 5.1 x 104 
15 10.08 3.5 1 (5, 0.1) 168 0.02 3.2 × 103 
Ax = 5 0 m ,  N x = 6 4  
16 1.59 22.0 4 (5, 5) 96 0.08 8.2 × 105 
17 2.52 13.9 4 (5, 5) 96 0.04 8.2 X 105 
18 4.00 8.7 4 (5, 5) 144 0.02 8.2 X 105 
19 6.35 5.5 4 (5, 5) 168 0.01 8.2 × 105 

f is Coriolis parameter (in units of 10 -4  s - l ) ,  4 z r / f  is duration of a pendulum day (h), H is total 
depth (km), (KH, K V) are vertical and horizontal components of diffusivity (m 2 s - l ) ,  t~u n is duration of 
run (h), Ro * is the natural Rossby number, and Ray is the flux Rayleigh number, Ax is horizontal grid 
spacing, N x is number of gridpoints in each horizontal direction. The vertical grid spacing Az was 50 m 
for runs with H < 2 km, 100 m for H = 4 km and 200 m for H = 8 km. N z, the number of levels in the 
vertical, was 40 for H > 2 km and 20 for H = 1 km. The time step was 30 s for Ax = 25 m and 60 s for 
Ax = 50 m. 

ranged from 5 x 10 4 to 6 x 1012 (see Fig. l(a)). In all runs, the cooling at the top 
was Q = 800 Wm -2, which produced a buoyancy loss of B - - g a Q / p c p  = 4 x 10 -7  
m2s  -3  (Cp, tabulated in Table 2, is the specific heat). For each of our chosen values 

Table 2(b) 
Parameters, resolution sensitivity tests 

Run f H (K,v, Kv) t~n Ro* Raf  Ax N x d Az  N z 

a 1.00 2 (5, 0.1) 48 0.32 5.1 x 104 250 16 4.0 100 20 
b 4.00 2 (5, 0.1) 72 0.04 5.1 x 104 250 16 4.0 100 20 
c 10.08 2 (5, 0.1) 120 0.01 5.1 x 104 250 16 4.0 100 20 
d 1.00 2 (5, 0.1) 48 0.32 5.1 × 104 250 64 16.0 100 20 
e 10.08 2 (5, 0.1 96 0.01 5.1 x 104 250 64 16.0 100 20 
f 1.00 2 (0.1, 0.1) 24 0.32 6.4 x 109 50 64 3.2 50 40 
g 1.00 2 (0.1, 0.1) 24 0.32 6.4 x 109 50 128 3.2 100 20 
h 4.00 2 (0.1, 0.1) 12 0.04 6.4 x 109 25 128 3.2 200 10 

Symbols as in Table 2(a). In addition, d is domain width (km). 
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Fig. 1. (a) Run label number (see Table 2) and (b) Rossby number Ro = U/fL (see Section 4) as a 
function of the flux Rayleigh number Ra/and natural Rossby number Ro * for all experiments. Symbol 
type denotes ratio of horizontal to vertical diffusivi!y 3': +, 3' = 1; ©, 3' = 10; ×, 3' = 50. Dotted line 
shows approximate division between the heton and three-dimensional regimes. Run 8 (not shown) has 
3' = 1 and the same Ro * and Ra/ as Run 9. 

of  R a f ,  d i f fe ren t  R o  * va lues  were  o b t a i n e d  by varying f f rom its t e r res t r i a l  va lue  
o f  10 =4 s - I  up  to 10 × 10 -4  S-lo R a f  was va r i ed  by changing  H and  K/_/. In  all 

runs,  H r a n g e d  f rom 1000 to 8000 m. The  diffusivit ies (KH,KV) used  r anged  
b e t w e e n  0.01 and  5 m E s -1 and  can be  found  in Tab le  2 (see also Fig.  l (a)) .  
A n i s o t r o p i c  diffusivi t ies  were  used  in some  expe r imen t s  to fac i l i ta te  c ompa r i son  
with  the  low-reso lu t ion  resul ts  o f  Jones  and  Marsha l l  (1993), which had  (KH,K V) = 
(5,0.1) m2s -1. 

3.2. Observed regimes 

Ini t ia l ly ,  a s ta t ical ly  uns t ab le  layer  of  cold  wa te r  d e v e l o p e d  at  the  t op  of  the  
w a t e r  co lumn which  b e g a n  to  ove r tu rn  and,  u l t imate ly ,  e x t e n d e d  down to the  
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(u,w) Vectors, v Contours 

horizontal distance (kin) 

Temperature 

0.5 1 1.5 2 2.5 3 
horizontal distance (km) 

Temperature Scale 

I I I  
11.958 11.97 11.982 11.994 

Fig. 2. Typical convective structures in the heton regime, taken from Run 10, with (Re*, R a f ) =  
(0.01,6.4x 106), 48 h after beginning of run. In all plots, the contour interval (c.i.) is equal to one-half 
the standard deviation of the field unless otherwise noted, with continuous lines indicating contours 
greater than zero and dashed lines indicating contours less than zero. (a) Velocity in vertical ( x - z )  
section, where vectors show components (u,w) in plane and contours show component v perpendicular 
to plane (c.i. = 0.01 ms-1). (b) Temperature in vertical ( x -  z) section. (c) Horizontal velocity (u,v) and 
dynamic height h' in horizontal ( x - y )  plane at a depth of 1475 m (c.i. = 2.7× 10 -4 m). (d) Vertical 
velocity w in horizontal plane at 1475 m depth (c.i. = 0.013 ms-1). (e) Divergence D of horizontal 
velocity in horizontal plane at a depth of 1475 m (c.i. = 2.1 x 10 -5 s 1). (f) Curl # of horizontal velocity 
in horizontal plane at a depth of 1475 m (c.i. = 1.2 x 10 -4 s-1). 

b o t t o m .  E v e n t u a l l y ,  c o n v e c t i o n  f i l l ed  t h e  e n t i r e  w a t e r  c o l u m n  a n d  a s t a t i s t i c a l l y  

q u a s i - s t e a d y - s t a t e  w a s  r e a c h e d .  I t  is t h i s  s t a t i s t i c a l l y  s t e a d y  s t a t e  t h a t  is t h e  f o c u s  o f  

a t t e n t i o n  h e r e ;  i t  w a s  o n l y  e s t a b l i s h e d  a f t e r ,  typica l ly ,  s e v e r a l  r o t a t i o n  p e r i o d s .  
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F i g .  2 (continued). 

All of our experiments fall within what Boui~nov and Golitsyn called the 
<geostrophic turbulence' regime with Ro * < 1. However, within this regime we 
observed qualitative and systematic flow differences which can be best character- 
ized in terms of the observed flow Rossby number (see Fig. l(b)). As Ro * and Raf 
were reduced the flow comprised distinct 'heton' (Hogg and Stommel, 1985; Legg 
and Marshall, 1993) pairs with counter-rotating flow above and below under 
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Fig. 2 (continued). 

rotational control. As Ro * and R a f  were increased we observed convective 
structures with a richer three-dimensional structure which tended to have a larger 
Rossby number.  The broad transition from the three-dimensional regime to the 
quasi-two-dimensional heton regime, is indicated by the arrow on the regime 
diagram (Fig. l(b)). 

Flow fields typical of the heton limit are shown in Fig. 2. Cells can be seen 



B.A. IQinger, J. Marshall/Dynamics of Atmospheres and Oceans 21 (1995) 227-256 239 

reaching from the top of the water column to the bottom (Fig. 2(a)). Associated 
with the sinking or rising currents there are strong horizontally swirling currents. 
Cyclonic circulation in the top half of the domain tended to be accompanied by 
anticyclonic circulation directly below and vice versa. A vertical section of temper- 
ature (Fig. 2(b)) shows the unstable stratification common to all our experiments, 
with the isotherms perturbed by the upwelling and downwelling motion. In the 
heton regime, the isotherm slopes tend to be relatively small and the isotherms 
undulate gently upward and downward. Similarly, horizontal sections of velocity 
and dynamic height (Fig. 2(c)), vertical velocity (Fig. 2(d)) and temperature show 
fields dominated by smooth patterns. The close alignment between isobars and 
velocity vectors in Fig. 2(c) indicates a high degree of geostrophic control. All runs 
with Ro * < 0.3 were under geostrophic control. 

As shown in Figs. 2(e) and 2(0, there is a rough but striking correspondence 
between patterns of vertical velocity w and patterns of divergence D = u x + v r and 
relative vorticity ff = v x - u r (compare Fig. 2(d) with Fig. 2(e)); stretching of the 
planetary vortex tubes generates cyclonic vorticity, and vice versa (Veronis, 1958). 
In the heton regime, the upwelling and downwelling regions had similar sizes and 
strengths. 

As shown in Fig. 3(a), vertical sections of velocity in the three-dimensional limit 
were complicated and exhibited a more complex connection between the various 
fields than in the heton limit. Vertical velocity w at a given horizontal coordinate 
changed sign one or more times with depth, whereas (u,v) did not have the simple 
vertical correlation seen in Fig. 2(a). The temperature field (Fig. 3(b)) displayed 
structure in the vertical at several different length scales, and the mean isotherm 
depths were more strongly perturbed than in the heton regime. The fields also had 
a more complex horizontal structure (Figs. 3(c)-3(f)). Runs in the three-dimen- 
sional limit tended to be less geostrophic than runs in the heton limit with similar 
values of Ro *, though for Ro * ~< 0.01 the flow was approximately geostrophic (Fig. 
3(c)) even in the three-dimensional regime. There was a noticeable asymmetry 
between upwelling and downwelling regions, with downwelling somewhat more 
localized and intense, especially towards the surface of the fluid. These surface 
downwelling structures may correspond to the intense vortices reported by Chen et 
al. (1989) and FCB. 

3.3. Vertical structure as a function of the external parameters 

Runs with lower flux Rayleigh number and natural Rossby number tended to 
have a simpler vertical structure. To quantify this tendency, we calculated vertical 
empirical orthogonal functions (EOFs) of the vertical velocity field in the final 
quasi-steady state. This decomposition can be expressed as 

w( x , y , z  ) = Ea~( x , y ) G  ( z ) (11) 
i 

where we refer to C i as the ith mode. In the standard calculation of such empirical 
orthogonal functions, the modes are ordered in terms of the amount of variance of 
the function captured by each mode, with the most significant mode coming first. 
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Fig. 3. Typical convective structures in the three-dimensional  regime, Run  4, (Ro * , R a f ) =  (0.01,6.4 x 
109), at 72 h. Contours  as in Fig. 2. (a) Velocity in vertical ( x - z )  section, where vectors show 
components  (u,w) in plane and contours show component  v perpendicular to plane (c.i. = s tandard 
deviation = 0.026 rns-1).  (b) Tempera ture  in vertical ( x - z )  section. (c) Horizontal velocity (u,v) and 
dynamic height  h' in horizontal ( x - y )  plane at a depth of 1475 m (c.i. = 3.5 × 10 -4  m). (d) Vertical 
velocity w in horizontal plane at 1475 m depth (c.i. = 0.018 m s - l ) .  (e) Divergence D of horizontal 
velocity in horizontal plane at a depth of 1475 m (c.i. = 1.0 × 10 4 s -  1). (f) Curl ~ of horizontal velocity 
in horizontal plane at a depth of 1475 m (c.i. = 2 .8x  10 -4  s 1). (c)-(f) include only one-quarter  of  the 
domain so that  the relatively small features can be seen more clearly. 

Fig. 4(a) shows the structure of the most significant modes for a typical run. In all 
runs, the most significant mode was the one with no sign changes in the vertical, 
with successive modes haV.i}ig one or more "sign changes. The percentage of 



B.A. Klinger, J .  Marshall/Dynamics of Atmospheres and Oceans 21 (1995) 227-256 

Dynamic Height and Horizontal Velocity 

1.6 ; 'H  !! t . '  ' kC.'.",',':: t', ~"~';'i'.-~';':~:..$ " +.','~l 

1 '4,S; ' { ' { { { . : ]~, ' , , ' , '~ l  "~ V;~,{z/,."js / g.~"z;:::.~...,. " 

......... k~-'~S~ ,-:;::: ,, , , ,  

E 0.8 .......... ,,x~.,~ : : : : ; ' -  
. . . . . . . . . .  ~-.,h . . . .  .~. .: 

>. : : :  : : : ::.--.-'~,,: : R . " ~ ~  ; ', : 

~ ,-;:: ... ~ .,,, 

0.2-! ~ ~--'S:-.. 4~1-~" , 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

1.6 

1.4 

1.2 

1 

E 0.8 

0.6 

0.4 

0.2 

Vertical Velocity 

: I i \  " ~ : / " l /  / ' l  CG \ 

: -  ' , ,  t/I~>@~? ,/. :':~:(~h 

.y.,,' i-~ ,,, ~.,.'..,~,..,, ,,--. ,> 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 
X (kin) 

Fig. 3 (continued). 
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variance in the data accounted for by the first mode is a measure of how 
two-dimensional the w field was. By examining output from all the experiments, 
we judged some of the runs to be close to the heton limit and others to be 
three-dimensional; as Fig. 4(b) shows, runs qualitatively identified as two-dimen- 
sional had first-mode strengths which accounted for greater than 60% of the total 
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variance, whereas the three-dimensional runs all had strengths of  less than 50%. 
For fixed Ro* ,  the strength of the first mode increased monotonically as Ra N 
decreased, and was most sensitive to Ra H around Ra H -- 106-108 in the transition 
zone between the regimes. 
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4. Scaling of observed flow parameters 

As described in the previous section, we observed two qualitatively different 
limits, a quasi-two-dimensional heton regime and a three-dimensional irregular 
regime. There does not appear to be a sharp transition from one limit to the other, 
but for the purposes of analysis, we divided the experiments into two groups, based 
on how quasi-two-dimensional the convection appeared to be. This judgment was 
supported and quantified by the EOF analysis described in Section 3.3. As shown 
in Fig. l(a), the experiments to the left of the dotted line are designated the heton 
regime, and the experiments to the right are designated the three-dimensional 
regime. The laboratory experiments of FCB are, we believe, in the heton regime, 
as are the low Ro * experiments of Boubnov and Golitsyn (1990) and Maxworthy 
and Narimousa (1994). We now consider the scaling appropriate to each regime 
separately, but for convenience display results for each in the same figure. We 

( a )  

2 

1.5 

E 
~, 1 
N 

0.5 

Vertical Profile of First 5 Vertical EOFs 

" ~ • i gime) 

\ / ". 

- IL  - 

• \ / 

, i ' l  

-0~)5 0 0.05 0.1 
variance-weighted EOF (arbitrary units) 

0.15 

(b) 

~ 10 -1 

o 
r r  

~ 10 2 
=- 

Percentage Variance Reproduced by First EOF 
i . f  i i i i 

x 9 . +45 

Heton Regime'-. 3-D Regime 
+82 ". +43 +39 

x90 +91 ,63". +36 +34 

×98 +92 ", 

x98 +97 80 ". +37 

63"- 

I I I I I + 2 5  , 

104 106 108 1010 1012 1 0 1 4  

flux Rayleigh number 

Fig. 4. (a) Vertical profiles of the five most significant empirical orthogonal functions of vertical 
velocity, weighted by variance associated with each EOF (Run 9, Ro* = 0.04, Ra H = 6.4× 106). (b) 
Percentage of variance of w(x,y,z) reproduced by lowest-mode EOF as function of natural Rossby 
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attempt to understand, to the extent that it is possible, the observed scales in terms 
of variations of the parameter  Ro * alone; we find that the flow characteristics are 
sensitive to moderate variations in Ro * and, for the parameter  range encompassed 
here, are much less sensitive to R a p  The key quantities describing the observed 
flow are mean stratification (this is the (adverse) stratification set up by the 
convection i t se l f - - the  ocean was homogeneous in density before the onset of 
convection), horizontal eddy length scale, and the standard deviation of velocity 
and buoyancy. All the statistics evolved over time to a final stage in which there 
was little sign of any trend in the statistics. The time to reach the quasi-steady state 
was on the order of several rotation periods, and tended to increase with total fluid 
depth, rotation rate, and horizontal diffusivity. This time scale was also different 
for different statistics, with horizontal speed generally taking the most time to 
reach its approximate final value. The statistics were estimated from the time 
average of the final state; time variations in each statistic were such that the 
estimate of the time average was good to within about 5%. 

4.1. The heton regime 

4.1.1. Stratification 
Although the whole domain was continuously losing heat as a result of cooling 

at the surface, the shape of the vertical profile of the horizontally averaged 
temperature at each vertical level attained an approximately steady state after cold 
water reached the bottom. The surface heat loss maintained a statically unstable 
temperature gradient for the duration of each run. In all runs, the stratification 
was characterized by a large buoyancy gradient near the surface and a somewhat 
smaller gradient over most of the water column (see Fig. 5(a), in which the profiles 
are normalized to emphasize the shape rather than the magnitude of the buoyancy 
profile). This is in agreement with the laboratory observations of Boubnov and 
Golitsyn (1990). 

How might we expect the top-to-bottom buoyancy difference Ab to depend on 
B, H,  and f ?  Let us suppose that the buoyancy loss B at the surface is distributed 
over a depth h in time t. Then 

Ab ~ B t / h  (12) 

If t = h / w  is the time it takes for a fluid particle to fall a distance h, where w is a 
typical downwelling speed, and if (see below) w scales with Uro t = ( B / f )  1/2 then 
this time scale is h/Uro  t (Send and Marshall (1994) called h / U , o  t, tma, a time scale 
to mix properties over a depth h) implying that 

A b  -~ ( B f  ) 1/2 = Gro t (13) 

or equivalently, A b / G n o  n -~ Ro*-1/3 .  Another  quantification of the adverse tem- 
perature gradient is to define an N 2 appropriate to statically unstable stratifica- 
tion: 

db dT 
N 2 = - -  = g a l  I (14) 

dz -~z 
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Fig. 5. Time-average vertical profiles of statistics--runs in two-dimensional regime denoted by continu- 
ous lines, in three-dimensional regime by dashed lines. Each vertical profile is normalized to emphasize 
the shape rather than the magnitude of the profile. (a) Mean buoyancy. (b) Mean horizontal speed U. 
(c) Standard deviation W of vertical component of velocity. (d) Standard deviation G of buoyancy. 

It should be noted that (13) implies N/for Re * 1/2. For all runs, N was calculated 
from the average of [dT/dz [ over the middle half of the water column, where it is 
approximately constant. N / f  tends to increase with Re * (Fig. 6(a)) and decrease 
with increasing Raf. A least-squares fit to all the experiments that fall in the heton 
regime yielded 

N/f  = 2.8Ro * l /3Raf  1/12 (15) 

(In these and the succeeding presentations of results, we round the denominators 
of all exponents of (Re *, Ray) to the nearest integer.) The dependence shown in 
(15) is not far from the Re * 1/2 dependence implied by (13), which is represented 
by the straight line in Fig. 6(a). Eq. (15) shows a dependence on the natural Rossby 
number that is in accord with Boubnov and Golitsyn's (1990) results, which may be 
written 

N/f  = 1.5Re * 1/3Raf 1/24 (16) 

when the parameters (Ta, Raf,  Pr) are converted to (Re*, Raf, Pr). Our 
numerical results also show weak dependence on Raf  as in the laboratory findings. 
Values of N / f  from the numerical runs, after normalizing with (15), are plotted in 
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Fig. 6. Observed N / f  as a function of natural Rossby number Ro * for runs in the two-dimensional 
regime (©) and the three-dimensional regime (+).  (a) Raw data, computed as described in text, with 
predicted curve N / f  = cRo * i/z (c = 2). (b) Data normalized by least-squares fits, using Eq. (15) for 
the two-dimensional regime and Eq. (24) for the three-dimensional regime. In (a), numbers next to data 
points show common logarithms of Raf. 

Fig. 6(b). It is also encouraging that the constant of proportionality in (15) and 
(16), 2.8 and 1.5 respectively, are of a similar magnitude. 

4.1.2. Horizontal length scale 
Length scales were computed from the autocorrelation function as a function of 

depth. The autocorrelations of the vertical velocity had a central peak surrounded 
by structures of smaller amplitude. The horizontal length scale of a field was 
defined to be the full width at half maximum (FWHM) of the central peak. The 
horizontal length scale measured in this way was roughly equivalent to one's 
subjective impression of eddy radius observed in contour plots of the flow fields as 
in Fig. 2, for example; they were. on the order of hundreds of meters. The resulting 
numerical data is fitted well by the relation 

Lw/H = 2.1Ro* 1/4Ra i 1/10 (17) 

(see Fig. 7). This expression is close to the laboratory results of Boubnov and 
Golitsyn (1986), whose measurements are equivalent to 

L / H  = 3.6Ro * 1/3Raf 1/12pr1/3 (18) 

where their L is half the distance between neighboring eddy centers, and should 
be similar to our measure of eddy radius. Eq. (17) is even closer to the expression 
for horizontal length scale given by linear analysis (Nakagawa and Frenzen, 1955; 
Chandrasekhar, 1961), which in terms of our parameters is L / H  ot 
Ro * 2/9Rai 1/9prl/9. This suggests that linear theory gives a fairly good estimate of 
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L/H even for Raf orders of magnitude greater than its critical value for 
instability. 

The length scale and stratification can be combined to form another nondimen- 
sional parameter, NH/fL, which may shed some light on the values of flow 
quantities observed in the convection experiments. Fig. 8 shows that in the heton 
regime NH/fL is close to unity. More precisely, we find 

NH/fL = 1.26 _+ 0.10 (19) 
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Fig. 8. Numbers  show N H / f L  as a function of flux Rayleigh number  R a / a n d  natural Rossby number  
Ro *. As in Fig. 1, symbol type denotes ratio of horizontal to vertical diffusivity 3'. 
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Combination of the expressions N / f  and Lw/H (Eqs. (15) and (17)) actually 
yields a factor of Ro * 1/12Ra1~60, which are such weak dependences that we cannot 
detect them. If N / f  o~ Ro * 1/2 as suggested by the physical argument leading to 
(13), and NH/fL = 1, then the implied variation of Lw/H is Ro .1/2 also. As 
seen in Fig. 8(a), there is much scatter but the points do cluster around a line with 
a slope of one-half. For each set of experiments with constant Raf, however, the 
points lie on a line of somewhat shallower slope which is better fitted by the 
Ro * 1 / 4  dependence of Eq. (17). 

It is of significance and interest that the (adverse) stratification and horizontal 
scale should adjust so that NH/fL is unity. The scale N H / f  is the long-wave 
cut-off of the Chandrasekhar (1953) stability problem (see also Davey and White- 
head (1981)). Linear waves which have a scale greater than this pseudo-Rossby 
radius are stabilized by rotation. It represents the scale at which the overturning 
forces associated with the adverse temperature gradient measured by N are 
balanced by the counter-overturning forces associated with rotation. It is on this 
scale that these two effects are in balance and that we observe our convective 
elements. 

4.1.3. Speeds 
At each level, we measured the standard deviation of b and w as well as the 

quantity U = ((u 2 + v 2))1/2 (()indicates the horizontal average over the domain of 
integration). Owing to the influence of rigid boundaries, W, the standard deviation 
of vertical velocity, had a broad maximum in the center of the water column (Fig. 
5(c)) whereas the tendency of circulations to form near the upper and lower 
surfaces caused horizontal speed standard deviations to have maxima at the top 
and bottom of the domain (Fig. 5(b)). 

Each statistic was averaged in time over the quasi-steady stage of the run and in 
space over the lower half of the domain. Both U and the W were found to be 
proportional to Uro t, as reported by Boubnov and Golitsyn (1990), FCB and Jones 
and Marshall (1993), but a weak dependence on the flux Rayleigh number was also 
found. Least-squares fit to the data yielded 

U/Uro t = 0.25Ra~/1° (20) 

and 

W/U,o t = 0.14Ray s (21) 

Plots of U before and after normalization by Eq. (20) are shown in Fig. 9. It should 
be noted that these data were much noisier than the statistics for N and L w. 
Normalizing N / f  and Lw/H with the scalings given above reduced the standard 
deviation of these statistics (based on the 11 data points from 11 runs) from 36% 
and 47%, respectively, to about 3% in each case, whereas normalizing the speed 
statistics, which had similar standard deviation of about 40% before normalization, 
only reduced the standard deviation to around 15% of the mean. 
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Fig. 9. Same as Fig. 7 but for horizontal speed U. (a) Raw data. (b) Data normalized using expressions 
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4.1.4. Rossby and hydrostatic numbers 
The Rossby number Ro = U/fL of the flow (see Fig. l(b)) was computed using 

L w as the measure of the horizontal length scale and U as defined above. Ro 
increased with increasing natural Rossby number, as one would expect, and also 
increased with Raf, because as friction is decreased, smaller, faster structures can 
appear, thus raising the value of Ro. 

A more direct measurement of geostrophy was made in selected runs. The 
geostrophic velocity (Ug,Ug)=(-Op/Oy,ap/Ox)/(fp o) was calculated from the 
pressure field at several levels in the water column. The ageostrophic velocity, 
defined as the difference between the actual velocity and the geostrophic velocity, 
was also computed and compared with the geostrophic velocity by taking the ratio 
of the variances of ageostrophic and geostrophic speeds ua/Ug. For Ro ~< 0.9, 
Ua/U ~ = 2Ro, and for Ro > 0.5, Ua/Ug = 1. Thus for ageostrophic velocities to be 
smaller than geostrophic velocities, we must have Ro < 0.5. 

It is also of interest to ascertain to what extent the convective structures 
modeled here are in hydrostatic balance. As pointed out by Brugge et al. (1991), a 
flow characterized by speed, length, and buoyancy frequency scales U, L, and N 
will be hydrostatic when (U//LN) 2 << 1. As shown in Fig. 10, (U//LN) 2 decreases 
with both decreasing Ro * and Raf. The hetons had rather small values of this 
hydrostatic paramer ( ( U / L N )  2 varied from 0.01 to 0.85), and as they also had 
small Ro, they are in thermal wind balance. 

4.1.5. Buoyancy 
Vertical profiles of G, the standard deviation of buoyancy, had broadly the 

same shape for all the experiments, with greatest values at the top of the water 
column (see Fig. 5(d)). Hydrostatic and geostrophic flow obeys the thermal wind 
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relation, which implies that fUL/GH = 1. This implies that G =fUL/H, which 
for the observed scalings of Lw/H and U (Eqs. (17) and (20)) recorded above 
implies that G --- G n o n R o  * 1/12 and so is essentially independent of rotation; we can 
neglect one-twelfth power dependence on Ro *, which is in the noise level of our 
experiments. The actual buoyancy standard deviation in the heron regime was 
observed to be 

G = ( 1 . 0  ___ 0 . 2 5 ) G n o  n (22) 

The somewhat large scatter in the coefficient did not show any significant trend 
(see Fig. 11). The observed scalings of U, Lw/H and G then combine to give us 

fUL/GH = 0.78 + 0.16 (23) 

~ 10 -1 

n,. 

" ~ 1 0  "2 

Buoyancy Variation Normalized by Gnon 
I i ' 

÷ .93 ×.'98 ' .. 

Heton Regime'.. 3-D Regime 
+.91 ". +97  +.97 

× 1.23+ .9L  1.2.1 + 1.08 

x 1.07 + .88 ".. 

x .95 + ,64-; 1.57 ". + 1.24 

.8T. 

I I I 1 1100 
10 4 10 6 10 s 

flux Rayleigh number 

+ 1 ,  

I 
1012 10 TM 

Fig, 11. Normalized buoyancy variance G/Gno n as a function of Ra f  and Ro*.  Symbol types as in 
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The result (22) for G differs from both that of FCB and Boubnov and Golitsyn 
(1990), who found that G scaled with Grot, but is dynamically self consistent. In 
other words, to the extent that the convective structures are under geostrophic and 
hydrostatic control, (22) is the only consistent scaling for G, given (17) and (20). 
Using Boubnov and Golitsyn's scalings for L / H ,  U, and G would imply f U L /  
GH = Ro * l/3Ra~-1/12 and so violate either geostrophy or the hydrostatic assump- 
tion. The discrepancy can perhaps be explained by high-mode vertical structures 
which may have existed in some of Boubnov and Golitsyn's runs and which were 
observed by FCB. When the motion is three-dimensional, the appropriate vertical 
length scale for the thermal wind can no longer be assumed to be H. 

4.1.6. Effect of anisotropic diffusivity 
One factor that complicates the comparison of numerical experiments with the 

laboratory experiments is the use of an anisotropic diffusivity of heat and momen- 
tum in some of our runs in the two-dimensional regime. To investigate whether 
such a procedure produces results which differ from those employing an isotropic 
diffusivity, a simulation with high horizontal and low vertical diffusivity ((KH,Kv) = 
(1,0.1) mZs -1) was repeated with all parameters the same except for the vertical 
diffusivity, which was raised to 1 m 2 s -1 (see Runs 9 and 8 in Table 2(a)). A 
comparison of the two runs showed that the flow fields were qualitatively the same 
and the flow statistics were very similar. The vertical temperature gradient and the 
standard deviations of temperature, horizontal speed, and vertical speed of the 
high K H run differed by at most only 15% from the corresponding value in the low 
K H run. Similarly, Lw in the high K~4 run was within 5% of its value in the other 
run. This implies that a convecting fluid, at least in the parameter regime of our 
experiments, in which the diffusion terms are smaller than the inertial terms in the 
equations of motion, is insensitive to the precise value of the smaller of the 
(anisotropic) diffusivity components. 

4.2. Three-dimensional regime 

The three-dimensional regime was characterized by Ro of order unity and by 
nonhydrostatic effects (see Figs. l(b) and 10). Thus, the thermal wind scalings are 
not appropriate and cannot be used to constrain the various scalings. Moreover, 
the vertical scale was not set by H as in the heton regime. The dependence of the 
flow quantities on external parameters was again measured. 

A least-squares fit to the stratification parameter N / f  (see Fig. 6) yields a 
dependence on Ro * that is similar to that of the heton regime (Eq. (15)) and even 
closer than (15) to the Ro * 1/2 dependence derived using the physical arguments 
that led up to Eq. (13): 

N / f  = 1.2Ro* 4/9 (24) 

It should be noted that although N / f  is more sensitive to Ro * and hence to f 
than in the two-dimensional case, N is actually somewhat less strongly dependent 
on f (Not f  1/3 in the three-dimensional regime and N ~ f  ]/z in the heton 
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regime). This is consistent with the lesser degree of geostrophy exhibited in this 
regime. However, L w / H  had essentially the same dependence on Ro * and Raf as 
observed in the field of hetons (see Fig. 7): 

L w / H  = 1.0Ro* 1/4Ra71/17 (25) 

Although both Eqs. (24) and (25) are similar to the corresponding expressions for 
the heton regime, in the three-dimensional regime N H / f L  ranged between two 
and four, and tended to increase with Ro. 

In contrast to N / f  and Lw/H,  the horizontal speed and vertical velocity had 
no significant dependence on Ro* (see Fig. 9 for horizontal speed). Normalizing 
with the nonrotating velocity scale, we obtain 

U/Uno n = 0.54 + 0.06 (26a) 

W/Uno n = 0.42 + 0.05 (26b) 

As in the heton regime, G also had negligible dependence on Ro* (see Fig. 11): 

GIGno n = 1.1 __ 0.1 (27) 

The scalings exhibited by the three-dimensional regime in our experiments are 
indicative of an intermediate state between nonrotating convection and geostrophic 
convection. In this transition region, rotation seems to influence the horizontal 
scale of the convective elements as well as the mean stratification, but does not 
appear to influence the magnitude of the convective elements as measured by U, 
W, and G. 

5. Conclusions 

Numerical experiments with a high-resolution nonhydrostatic model of conver- 
tion in a rotating, initially unstratified domain produced a field of eddies whose 
characteristics depended on the natural Rossby number Ro* = (B / f 3Ha)  1/2 and 
the flux Rayleigh number Raf=BHa/Kav  (the Prandtl number, or ratio of 
momentum diffusivity to heat diffusivity, was unity in all our experiments). We can 
think of Ro * as a measure of the importance of rotation and Raf as a measure of 
the importance of diffusion of heat and momentum; increasing Ro* and Ray 
decreases the effects of rotation and diffusion, respectively. In the parameter 
regime of our experiments, 0.0025 ~< Ro * ~< 0.32 and 3 × 103 ~< Raf ~< 6 × 1012, we 
confirmed that the characteristics of the flow were sensitive to moderate changes 
in Ro * (factors of two) and large changes in Raf (factors of 1000). 

In rotating convection, buoyancy forces which tend to mix the fluid vertically are 
opposed by the effects of diffusion (or small-scale turbulent mixing) and rotation. 
On the one hand, convection creates regions of horizontal divergence and conver- 
gence as light water rises and dense water sinks. Diffusion tends to suppress 
motion on small scales, so that in nonrotating systems, upwelling and downwelling 
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regions have a horizontal scale which is typically comparable with the depth of the 
unstable fluid, which in deep oceanic convection is a few kilometers. On the other 
hand, rotation causes flow on sufficiently large scales to approach geostrophic 
balance, which is nondivergent. This is consistent with the observation that the 
horizontal length scale decreases with increased rotation and increases with 
increased diffusion. 

We presented physical arguments, which we briefly again draw together now, 
that predict the key scales observed (and which were broadly supported by our 
experiments). At sufficiently small Ro*, the magnitude of the adverse buoyancy 
gradient Ab, maintained by rotation in the face of surface cooling, varies as 
( B f )  1/2. This may be expressed equivalently in term of N, thus: 

N 
- -  = R o *  1/2 ( 2 8 )  

f 

(the straight line drawn in Fig. 7(a)). The horizontal length scale of the ensuing 
convection is such that 

N H / f L  = 1 (29) 

suggesting that 

L 
- -  -- Ro* 1/2 ( 3 0 )  
H 

(the straight line in Fig. 8(a)). Furthermore, if U = Uro t as observed in the heton 
regime, then if the flow is in geostrophic and hydrostatic (and hence thermal wind) 
balance, we obtain 

fUL 
G = --H-- (31) 

which, combined with (30) implies that G is independent of Ro * 
The above scalings are broadly supported by our numerical experiments (in the 

quasi-two-dimensional regime); the points in Figs. 7(a), 8(a), and 10(a) do cluster 
around the straight lines plotted on the basis of the above simple considerations. 
Because our experiments were not (and indeed cannot be) carried out at suffi- 
ciently high Rayleigh number, the observed scales show a dependence on Ra£ also; 
they deviate somewhat from the scales predicted above and exhibit a more 
complicated dependence on both Ro* and Ray. However, we find that this 
dependence was broadly in accord with that observed in laboratory experiments 
carried out in the same parameter regime. The relation N H / f L  "" 1, the long-wave 
cut-off of (linear) rotating Rayleigh theory, was found to hold in the heton regime, 
even though the flux Rayleigh number was high enough so that nonlinear effects 
were potentially important. 

Rotation and diffusion both act to inhibit the vertical transport of buoyancy and 
so lead to a greater unstable density gradient. Our experiments do indeed exhibit 
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increasing vertical density gradient for decreasing Ro *, and decreasing Raf: in the 
heton regime, N / f =  2.4Ro*l/3Raf 1/12, and in the three-dimensional regime, 
N / f =  1.2Ro .1/2. This is similar to the dependence found by Boubnov and 
Golitsyn (1990), N / f  oc Ro*l/3Raf  1/24 in the laboratory. Chan (1974), whose 
results formally were limited to the case of infinite Prandtl number, arrived at such 
a scaling by maximizing the vertical heat flux produced by a given unstable 
stratification. 

As described above, we would expect the effects of diffusion and rotation on 
eddy size to work in opposite senses, because diffusion suppresses motion at small 
scales, whereas geostrophy suppresses vertical motion on large scales. Accordingly, 
the horizontal length scale of the convective motion was best fitted by the 
expression L w / H =  2 . 1 R o  *l /4Raf l / l °  for runs in the heton regime and by 
L w / H =  1.0Ro .a/4 Rafl/17 in the three-dimensional regime. Both scalings are 
close to the laboratory observations of Boubnov and Golitsyn (1986). 

The behavior of the horizontal and vertical speed scales were different in the 
heron and three-dimensional regimes. In the heton regime, U and W were both 
proportional to Uro t = ( B / f )  1/2, but in the three-dimensi0nal regime, U and W 
were closer to the nonrotating velocity scale Uno n = (BH) 1/3. In both regimes, G, 
the horizontal variation in buoyancy, was virtually independent of f.  

It is likely that the more complicated structure of the flow in the three-dimen- 
sional regime is due to an instability of the lowest-vertical-mode convection cells. If 
that instability were inhibited by viscosity, then one would expect that the vertical 
structure might be a function of the Reynolds number, Re = UL/f .  If we use the 
observed heton regime scaling for U and L (ignoring the weak dependences on 
Raf) and express v in terms of Ray, we find that the approximate dependence is 
Re-- (Ro*2Raf)  1/3. This implies that the transition from the heton limit to the 
three-dimensional limit should occur in a direction normal to the curves in which 
Ro* = R a i  1/2. This indeed is observed: the dotted line in Fig. l(a) has a slope of 
approximately 1 - -  3, strengthening the hypothesis that the Reynolds number is the 
important parameter governing the transition. 

It is difficult to apply numerical and laboratory results directly to the ocean, 
largely because of the sparsity and nature of the observations at the relevant time 
and space scales. However, deep convection in the ocean appears to be in a regime 
in which Ro * ~< 1. Evidence from the MEDOC experiments suggests that Ro * -- 0.3 
in deep-reaching convection, and so rotation may have an influence on the 
convective elements. The explicit diffusivity employed in our simulations is best 
thought of as a simple parameterization of unresolved convective scales--an eddy 
diffusivity. The appropriate diffusivity for a convecting chimney in the ocean is 
poorly known. One practical way forward might be to infer Rag from available 
observations. For example, in the recent observations of Schott and Leaman (1991) 
in the Gulf of Lions, one observes horizontal currents of approximately 5 cm s- 1 in 
a chimney of 2 km in depth, forced by cooling at rates of about 500 W m -2, giving 
Ro * = 0.24. If the ocean was in the heton regime, Uro t = 4 cm s-1, and so if our 
scaling is appropriate, Raf = 10 7 and K --~ 0.6 m 2 s- 1. For H ~- 2 km this predicts 
L = 500 m, which is broadly consistent with observations. 
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