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ABSTRACT

An isentropic coordinate form of quasigeostrophic potential vorticity is derived. Compared with the well-
known height and pressure coordinate versions, this isentropic form is more clearly related to Ertel’s potential
vorticity and the derivation from it is much simpler. A derivation from quasigeostrophic approximations to the
governing equations is also given and the boundary conditions to be applied on isentropic surfaces are discussed.
Analogous developments using isopycnal coordinates are given assuming an incompressible fluid model.

1. Introduction

In recent years there has been renewed meteorolog-
ical interest in isentropic analysis. One of its attractions
is that in isentropic coordinates there is no “vertical®
motion if the flow is adiabatic. Furthermore, as at-
mospheric databases have improved, it has become
feasible to diagnose isentropic distributions of the Ertel
potential vorticity (herein referred to as the PV). The
significance of this dynamical tracer was recently high-
lighted by Hoskins et al. (1985, herein referred to as
HMR): the main attributes of PV are that it is mate-
rially conserved on isentropic surfaces in the case of
adiabatic frictionless flow, and that given some balance
condition on the wind field and appropriate boundary
conditions it defines that field. Analogs of PV and its
conservation are deemed desirable in any approximate
formulation of fluid dynamical equations.

Quasigeostrophic (QG) models are among the most
important approximate formulations in geophysical
fluid dynamics. A key quantity in QG models is quasi-
geostrophic potential vorticity (QGPV) which takes
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the form Ly, where ¢ is a streamfunction of the hor-
izontal flow and £ is a linear elliptic differential op-
erator. Although some derivations (see Charney and
Stern 1962; HMR ) have emphasized the relationship
of QGPV conservation in height or pressure coordi-
nates to the conservation of PV on isentropic surfaces,
the relationship between the two quantities themselves
has often been obscured. This is because the develop-
ment of QG models has usually been formulated in
height or pressure coordinates (see Charney and Stern
1962; Phillips 1963; White 1977; Gill 1982; Bannon
1989).

Somewhat surprisingly, there have been few appli-
cations of QG theory in isentropic coordinates. Bleck
(1973, 1974) has studied the performance of forecast-
ing models that use isentropic coordinates in conjunc-
tion with the geostrophic approximation (see Charney
and Phillips 1953); the resulting PV is nonlinear in
the Montgomery streamfunction and hence not of the
less accurate QGPV form. Gent and McWilliams
(1984) have discussed a number of filtered models in
isentropic coordinates but not the QG model; Hoskins
and Draghici (1977) had previously examined the
semigeostrophic equations in isentropic coordinates.
Thermocline models of ocean gyres (see Welander
1971; Huang 1988) use isopycnal PV as a dependent
variable but neglect the contribution of relative vortic-
ity. In a study of stratified flow over isolated topogra-
phy, Schir and Davies (1988) used an isentropic co-
ordinate version of QGPV, which is similar to that
given in (12) or (22) below, although of a slightly less
general form. Our purpose here is to give a systematic
development of QGPYV in isentropic coordinates and
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to relate it to the more familiar height and pressure
coordinate forms (which can be derived by simple
transformation of the isentropic QGPV).

In section 2, an isentropic form of QGPYV is derived
by linearization and scale analysis of PV; note in par-
ticular the directness of the derivation as compared
with that of QGPV in other coordinate systems and
also the clear relationship between this form of QGPV
and Ertel’s PV. In section 3, the same QGPV is derived
from QG forms of the governing equations written in
isentropic coordinates. Boundary conditions are dis-
cussed in section 4. Section 5 deals with the analogous
development of isopycnal QGPV when an incompres-
sible fluid model is assumed.

2. Derivation from Ertel’s potential vorticity

The hydrostatic approximation will be used, and we
will assume adiabatic, frictionless conditions through-
out. The PV can then be written in isentropic coor-
dinates as

ap\™!
P = — + —_—
8(f ro)(ao) : (1)
whe_re the potential temperature 8 is given by
_ p
In(8) =In(T) —« ln(;) (2)

and g, x, T, p, and p; are, respectively, the acceleration

due to gravity, the ratio of the gas constant (R), and - P~

the specific heat at constant pressure (C,), the tem-
perature, the pressure, and a reference surface pressure.
The Coriolis parameter is denoted by fand {; is the
relative vorticity of the horizontal motion evaluated
on a # surface. The Montgomery potential M is given
by

M=gz+CT=gz+ cpo(ﬁ) ,

3
o (3)

where z is height, and its “‘vertical” derivative is given
by

oM K_g

Each atmospheric variable (e.g., p, T, M) can be
expressed as the sum of a reference value (denoted by,
subscript “0”), which is a function of § only, and a
deviation (denoted by “’'”). For example,

p(x’yy 05 t)=p0(0)+P'(X,y, 0, t), (5)
where (x, y) are orthogonal horizontal coordinates and
t is time.

For small deviations from the reference state (i.e.,
when p’/po < 1), (2) implies

(4)
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I 2. (6)
0 Do
From (4), using (6), '
oM’
!~ —_ 7
D p00 60 ) ( )
where p is density. We can then write
-1 -1 ’ 60
LN ) B P R
a0 de dpo/do

On making the B-plane approximation, the geo-
strophic flow (v,) can be written

ng_l’kXVng=kXVg¢, (9)
Jo

where f; is a reference value of f(=f + 8y), V, in-

dicates that the gradient is evaluated on isentropic sur-

faces, and ¢ is the geostrophic streamfunction. The

relative isentropic vorticity in ( 1) may be replaced by

its geostrophic value (), given by

f’ag = V%\I/

if the Rossby number is small. On using (8 ) and setting
S+ & to fo when it multiplies dp’/d6, the PV can be
written as

(10)

g
dpo/d@

[fo + By + Viy

__ S8 8
(dpo/ d0) 30 (”"0 aa)] » (1D

and we identify the quantity Q, defined by

i 9 oY
— 2.4, _ — =
Q =By +Viy (dpo/d0) 98 (p00 aa) (12)

as the isentropic counterpart of the usual QGPV.

The scaling conditions for the approximations made
in deriving (11) must be considered. Suppose that the
motion has a horizontal velocity scale V, a horizontal
space scale L, and a vertical 8 scale Af. From (9), M’
~ foV L. If the vertical space scale of the motion, H,
is of order Hy (=RT,/g, the scale height associated
with T,), the approximation (8) is valid only if

ap'/e6 p 6 fVL
~——~ k. 13
dpo/dd po A8 gH, (13)
So the conditions for the validity of (11) are
Ro<1; (RiRo)!'<«1, (14)

where Ri = N?H?/V?and Ro = V/(fL) are the Rich-
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ardson and Rossby numbers, and the buoyancy fre-
quency N is defined by N>H/g = A8/6. On the synoptic
scale typical values of Ri and Ro are 102 and 107",
respectively, so the conditions ( 14 ) are reasonably well
satisfied.

The second condition in (14) may be regarded as
requiring the flow to be Boussinesq in the sense that
fractional changes of p, 7 (and hence p) over an is-
entropic surface are small. It contrasts with the cor-
responding criterion in height or pressure coordinates.
For example, in height coordinates p’ ~ pofoV L for
nearly geostrophic motion, and it follows that

P 0 VL_
Do Po gH

N’H

—Z(RiRo)™" (15)

(see Charney 1963). Since N’H/g < 1 (N*Hy/g = «
for an isothermal atmosphere), (15) gives a less strin-
gent condition for Boussinesq behavior on constant
height surfaces than does (14) for Boussinesq behavior
on isentropic surfaces. In the height coordinate case
condition, however, (14) must be obeyed if the con-
tribution to Ertel’s PV of the horizontal vorticity com-
ponents multiplied by the horizontal ¢ gradients is to
be negligible (Green 1970, p. 170). In both coordinate
systems, therefore, (14) is the most demanding con-
dition for the validity of the appropriate QGPV and is
equivalent to requiring that the pressure on an isen-
tropic surface does not deviate far from its reference
value.

Of perhaps greater interest is the simplicity of the

derivation of the isentropic coordinate form of QGPV "’

as compared with the derivation of the corresponding
forms in other coordinate systems. In height coordi-
nates, for example, we must first argue that the terms
in Ertel’s PV that involve the horizontal components
of vorticity are negligible (see above). Then the vertical
advection of Ertel’s PV must be allowed for by using
a quasigeostrophic form of the thermodynamic equa-
tion to eliminate the vertical velocity. Neither of these
steps is necessary in the isentropic coordinate derivation
shown above, which is consequently much more direct.
The absence of adiabatic vertical advection in # coor-
dinates also leads to a simple relationship between
QGPYV and Ertel’s PV itself [see (11) and (12)]. In all
coordinate systems other than § (or functions thereof),
this relationship is obscured; various authors identify
the QGPV in height or pressure coordinates as a
“pseudo PV” (HMR, p. 911; Charney (1971), p.
1089). '
The p- or z-coordinate forms of QGPV may be de-
rived from the isentropic form (12) by transforming
the vertical coordinate and neglecting various terms
that are small if conditions ( 14) are obeyed. In the p-
coordinate case, for example, V7 may be replaced by

V3, Po(8) by p, and po(8)8 by po(p)bo(p), given (14).
Thus,
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2.4
By + Vav =~ oy ) aa( of 60)
1 o
~By+ Vi fh o (Nz ‘”), (16)
where N3 = —(pofly) ' dbo/dp. The rhs of (16) is a

familiar form of QGPV in p coordinates.

Given the simplicity of the derivation of the isen-
tropic form of QGPYV, it appears that the quickest way
to derive QGPV conservation in p or z coordinates
from conservation of Ertel’s PV is to derive the #-co-
ordinate version and then to obtain the p- or z-coor-
dinate form by transforming the vertical coordinate.

3. Derivation from the governing equations

Conservation of the quantity Q, as defined by (12),
may be derived from quasigeostrophic forms of the
horizontal momentum, continuity, hydrostatic, and
state equations assuming adiabatic, frictionless con-
ditions. The hydrostatic primitive equations in  co-
ordinates are then

(§+v-va)v+fk><v+VaM=O (17)

ad
( +v- V,,)a—p+a—pvg =0,

ot a0 a0 (18)

together with (2) and (4). Corresponding quasigeo-
strophic forms (with the S-plane approximation) are

(:l+vg V,,)vg+ﬁ)k><va+ﬂyk><vg—0 (19)
dpo

i) ap’
+v,-V
(61 ve ") % " do
together with (6), (7), and (9). Here v = v, + v,,, and
M, T, and p have been expanded as indicated by (5).
These equations are valid approximations of the hy-

drostatic primitive forms if conditions ( 14 ) are satisfied.
From (19), it follows that

Veeve =0 (20)

(é)% + vg-V,,)(By + VoY) + foVe v, = 0. (21)

Hence, using (7) and (20),
9
(at + v, V,,)[ﬁy + V2y

/3 9 Y
+ —— g—1|t=0
pog(dzo/dd) 36 \ P 36
in which the conserved quantity is the isentropic
QGPV, Q, defined by (12). Schir and Davies (1988)

give a less general form of (22) in which the factor pf
is replaced by a representative surface value.

(22)
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The above derivation of (22) depends on the reten-
tion of the term (8/dt + v,-V;)(dp'/80) in the QG
continuity equation (20). The QG model in 6 coor-
dinates is thus essentially of the “modified” rather than
the “standard” type (see White 1977). This resem-
blance is borne out by a consideration of the energetics
of the system. By multiplying (22) by ¥, an energy
equation can be obtained whose quadratic form is sim-
ilar to that of equation (34) of White (1977).

4. Quasihorizontal boundary conditions

At rigid horizontal boundaries the condition to be
applied is w = Dz/Dt = 0. If isentropes deviate from
horizontal surfaces by much less than a scale height of
the motion, which is guaranteed by satisfying (14),
then it is an acceptable approximation to apply this
boundary condition on an isentrope, 6, which is near
the physical boundary.

Hence, we apply on § = 4,

3 (23)

w= (2 + vg-V(,)z’ =0,
indicating that height deviations are simply advected
around on the isentropic surface. Considering the bot-
tom boundary, positive deviations would imply low
values of # at the ground, whereas negative deviations
would imply high 8 values there. Since

82 _
I3 v—90 %0’ (24)
(23) may be written as
19y (0 L
_ T — .V, | —= .
aaz+(az+v3 ")ao 0 (23)

This expression contains a ‘“non-Doppler” term:
(6)'0y /8t (White 1982). It is negligible if AG/6 < 1,
where Af is the “height” scale of the motion in terms
of 8. Since A9/8 = N*H /g, the condition for the neglect
of the non-Doppler term is precisely the same as in the
height coordinate case (White 1977).

If the non-Doppler term in (25) is neglected then
the boundary condition is simply that 3y /a6, which is
a function of pressure deviation according to (7) and
(9), is advected around on the bounding isentrope. A
useful conceptual device can now be utilized (see
Bretherton 1966 ). For example, the bottom boundary,
65, can be considered to be a pressure surface (where
oY/a38 = 0) if the quantity

f36 3

g(dzo/ db) %Haw —0)

(26)

is added to the rhs of (12). Here “s-+” indicates eval-
uation just above the bottom boundary and 6 is the
Dirac delta function. The physical equivalence here is
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of interest in that (26) represents a discontinuity in
the pressure just above the lower boundary. This im-
plies the presence of a nonzero mass of air with very
low static stability.

5. The incompressible equations

For its oceanographic relevance, QGPV is now for-
mulated in isopycnal coordinates for the case of a het-
erogeneous incompressible fluid.

Hydrostatic isopycnal PV may be well approximated
by

-1
_ Ut (93) ’ 27

Ps dp

where ¢, is the relative vorticity on an isopycnal surface

and p, is a constant value of density. [In the ocean, the

fractional density variations are of the order of 1073,

so the use of p, instead of p in (27) is amply justified.]
The Montgomery potential is defined as

M=gz+2 (28)
p

(see Starr 1945), and hydrostatic balance can be ex-

pressed as

2 (oM) = g2. (29)
P

As before, if horizontal deviations of static stability
are small compared to the reference values, then a bi-
nomial expansion of (27) using (29) leads to the QGPV
quantity

f3 9
a(dzo)dp) 397 PV

where V2 is the horizontal Laplacian evaluated on an
isopycnal surface.

Again Ri Ro » 1 is the most stringent condition for
validity {see (14)] and requires that the deviation depth
of an isopycnal surface from its reference value be small
compared with the vertical scale of the motion. On the
scale of ocean gyres Ri ~ 104 and Ro ~ 1073; again,
therefore, conditions ( 14) are reasonably well satisfied.

By + Vi — (30)
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