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ABSTRACT

An attempt is made to incorporate into a two-layer, zonally averaged, channel ocean model the
important transfers achieved by a geostrophic eddy field, using gross parameterizations rather than
resolving individual eddy events. It is shown that a representation of the eddy field as an explicit
diffuser of potential vorticity can give a reasonable description of the interaction between the eddies
and mean flow, provided care is taken to satisfy the attendant constraints that the zonally invariant

channel geometry imposes on the eddy fields.

1. Introduction

In formulating a theory of the large-scale ocean
circulation, account must be taken of both mean and
turbulent transfers of quantities such as heat and
vorticity.

Munk (1950) suggested that the influence of large
lateral eddy transfers might be important only on
the western sides of the ocean, although later ob-
servations cast doubt on the neglect of eddy vorticity
transfer away from boundary regions. {See Simmons
etal. (1977) for areview of the Mid-Ocean Dynamics
Experiment (MODE).] It has now been established
that mid-ocean mesoscale (geostrophic) eddies are
prevalent. These eddies have a scale close to the
Rossby radius of deformation (of order 50 km) and
are thought to be important transferring agents of
heat and vorticity. It is necessary to come to terms
with a turbulent ocean full of mesoscale eddies
which have a significant effect on the mean larger
scale circulation. A problem for the ocean modeler is
the necessity to incorporate these small space-scale
eddies into a large, gyre-scale model.

Numerical models of the general circulation with
sufficient horizontal resolution to include motions
on the scale of the Rossby radius explicitly, within
the larger scale circulation, have been constructed —
the so-called eddy resolving general circulation
models (EGCM). The first of these was due to
Holland and Lin (1975a,b). Subsequently, others
have been developed—Robinson et al. (1977),
Semtner and Mintz (1977), Holland (1978) and
McWilliams et al. (1978). They show the develop-
ment of mesoscale eddies within the larger scale
circulation. The results suggest that internal insta-
bility produces vigorous geostrophic eddies which
play a crucial role in the larger scale dynamics.
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If mesoscale eddies are as important in the ocean
as they are in the EGCM’s, one must consider the
most appropriate way of incorporating them in a
large-scale model.

a. The desirability of a parametric representation
for the mesoscale

The mesoscale in the ocean is dynamically
analogous to the synoptic scale in the atmosphere
(for a review of mesoscale dynamics see Rhines,
1977). The motions are both quasi-geostrophic quasi-
two-dimensional, and on the scale of the respective
Rossby radii. However, there is a more serious
resolution problem for the ocean modeler.

In the ocean the Rossby radius (the length scale
of dynamical importance) Lp ~ 50 km, compared
with a horizontal extent of the domain, L, ~ 5000
km. For comparison, in the atmosphere Lp ~ 1000
km and L, ~ 10 000 km. So the oceanic eddies are
not only smaller in absolute terms than their atmos-
pheric counterparts, but also relative to the size of
the domain. Because an ocean basin is many eddy
diameters wide (L./Lp ~ 100) it is difficult and
expensive to resolve the eddy field and, at the same
time, the large-scale gyres. In order to adequately
resolve the mesoscale, a resolution of 20 km or less
would be required—about 100 000 grid points at
each level in the vertical to resolve the North
Atlantic alone (see Gill, 1971). To model the world’s
oceans with such a horizontal resolution is im-
possible at present, and probably undesirable any-
way. The EGCM’s reach a compromise by modeling
an ocean basin which is unrealistically small. In
contrast, it is far easier to resolve the synoptic
scale in a global atmospheric model (in this case
L. /Lp ~ 10).
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A sensible goal for the ocean modeler is to de-
velop, if possible, adequate parameterizations for the
mesoscale, enabling mean quantities to be dealt with
directly. It is desirable to structure ocean general
circulation models in this way —explicitly resolving
the three-dimensional large-scale, sluggish circula-
tion, while parameterizing the considerably smaller
scale transient eddies. Such implicit models require
much less horizontal resolution and are more efficient
computationally, enabling larger domains to be
studied on longer time scales. The focus of atten-
tion is drawn away from an individual mesoscale
event to the statistical effect of a large number of
such events.

This approach has been adopted in atmospheric
modeling. Models of the atmosphere with short
synoptic (cyclone) scales represented by their
transfer properties have been successfully con-
structed for use in climate research (e.g., Green,
1970; Sela and Wiin-Nielson, 1971; White and
Green, 1980a,b).

It is not known at present whether an adequate
mesoscale closure can be found, but in any case
perhaps the greatest value of parameterized models
is that they lead to greater understanding and pro-
vide a perspective from which the more complex
models can be viewed.

b. The development of new parameterization
schemes

In developing a parameterization scheme, one
must be aware of the observational studies, using
real ocean data on the scale of the process to be
parameterized, and the data generated from the
numerical models which aim to explicitly resolve the
process. The observational and model studies that
have been carried out have shown that the simple
closure laws previously used are not adequate.
Early theories parameterized the mesoscale in terms
of an eddy-diffusivity and eddy-viscosity (Munk-
type) formulation. The viscosity and diffusivity were
assumed to be constant in space and time, and posi-
tive. From observations, correlations of eddy hori-
zontal velocity components often show transfer of
momentum upgradient, corresponding to a ‘‘nega-
tive viscosity’’ (Webster, 1961; Schmitz, 1977). In
the EGCM’s, the mesoscale produces eddy heat
and vorticity fluxes according to the thermodynamic
and hydrodynamic equations. Again, the results
suggest that closures based on constant viscosity
and diffusivity laws are inadequate representations
of the transfer properties of the mesoscale (see,
e.g., Harrison, 1978; Rhines and Holland, 1979;
Holland and Rhines, 1980). A scheme based on a
more detailed treatment of the mesoscale dynamics
is required. An early attempt to find such a scheme
was made by Welander (1973).
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The development of a physically accurate closure
will rely heavily on the EGCM modeling results,
together with the sparse observations. Of the
EGCM’s, the two-layer quasi-geostrophic models
provide the simplest and most useful framework in
which to develop a physically realistic mesoscale
parameterization.

2. The two-layer quasi-geostrophic models

The Holland (1978) and McWilliams et al. (1978,
hereafter MHC) models are the simplest of the
EGCM’s.. They are two-layer quasi-geostrophic,
B-plane models, driven by a sinusoidal wind stress
and have minimal explicit diffusion. The stratifica-
tion and layer thicknesses are chosen to give
realistic values of the Rossby radius. The horizontal
resolution is chosen to adequately resolve motions
on this scale. The Holland (1978) closed-basin
model can be regarded as an extension of the
Veronis (1966) one-layer, nonlinear model, to in-
clude high resolution and stratification; that of MHC,
on the other hand, considers a partially blocked
channel as an approximation of the Antarctic
Circumpolar Current. It has many features in com-
mon with atmospheric flows.

The model equations can be written [for a deriva-
tion see Pedlosky (1964) or McWilliams (1977)]

D, fo k-curls,

+f)+ = Wy = ——— — A, la
Dr. &+ " T, 1 (1a)
D fo k- curls,

+) -2 w, = - X AL b
Dr, & +f) o, H, 3, (1b)
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where the upper layer is denoted by a subscript 1,
the lower layer by a subscript 3, the interface by a
subscript 2, §; is the streamfunction, & = V2 is the
relative vorticity, p, and p; are the layer densities,
g’ = g(ps — p1)/psis the reduced gravity, H; are the
layer thicknesses, k - curls; is the vertical component
of the external stress, W, is the vertical velocity at
the interface, f = f, + B,y (withf; and B, constants)
is the Coriolis parameter, D;/Dt, = 8/0t +J(;, )
is the substantial derivative, and A; is the explicit
diffusion.

Eq. (1) expresses the non-conservation of absolute
vorticity due to the effect of vortex stretching and
the presence of vorticity sources and sinks. Eq. (2)
is a continuity equation predicting the deviation of
the height of the interface from its equilibrium
position, i; = fo(W3 — ¥,)/g’. It can be looked on as
athermodynamic equation for the temperature at the
interface, which is proportional to (; — ).

Eliminating W, from (1), using (2), leads to the
potential vorticity equations
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mh (q0) = 5%‘3’— - A, (3a)
where
¢ f,Hl o),
Gs =&+ f+ g{;ﬁ W -

Eq. (3) expresses the conservation of the potential
vorticities, g; and g; except for changes caused by
external stress and molecular diffusion.

a. The averaged equations

The philosophy adopted in Holland (1978) and
MHC is to integrate the set forward in time from
a prescribed initial state and to examine the final
statistically steady state in which the eddy and
mean fields are in equilibrium. Once in the final
equilibrium state, the fields are divided into a mean
part (denoted by an overbar, representing some
averaging procedure) and a fluctuating or eddy part
(denoted by a prime), i.e.,

$i=Y + ¢ and ¢ =0,

Eddy transfer is introduced by averaging the ad-
vection terms. Substituting into (1) and (2) and
averaging, gives

So
+f)+V + W,
Dt H h (V1 &) H, 2
k-curly, .
= — — A, (4a
H, 1, (4a)
('fs +f)+ V- (sts)—f—owz
Dz, H,
k-curls, .
T = = ———— — A;, (4b
L 3, (4b)
Dth (l[h J13) + Vn‘("z’(l/lll - 413'))
g
+ = W,=0, (5
f
or, in terms of potential vorticity
D, . — k-curl? -
Dtl,, (@) + Y (v/q)) = —H—— - A, (62)
1 (G + V-Gran) = — K 5 (6b)
Dr, 3 n'\V3s {43 H, 3+
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The averaged potential vorticity equations may
be derived directly from (3) or from the averaged
vorticity and thermodynamic equations, (4) and
(5), with use of the following relationships between
the eddy fluxes of relative vorticity, potential
vorticity and heat:

Vi (vi'&") = Vi (vi'q,)

f° Va [v.'(g" — sl (7a)
Vi (vs'és') = Vh'(Vs ds )
- gf,}ia Vi v @~ ga)l. (7b)

In a parameterized model, instead of integrating
(1) and (2) forward (requiring high resolution in
space and time) and then averaging, mean quantities
are deait with directly through (4) and (5) (requiring
lower resolution in space and time). In such a
model a separation between eddy and mean fields is
made from the start, and the two interact through
the eddy flux divergence terms. In the explicit
models the eddy transfers are achieved by resolved
eddies, but in the implicit model the transfers must
be represented in terms of the mean fields by a
closure hypothesis.

b. Geometrical effects

As a consequence of the different geometry at the
large-scale, the basin model of Holland (1978) and
the channel model of MHC exhibit quite different
dynamics.

In the gyre model the flow is more greatly curved
due to the presence of meridional walls which ob-
struct zonal flow, and impose zonal gradients. The
classical Sverdrup balance plays an important role,
although severely distorted by eddy transfer. In
the channel model the flow is more zonal and driven
more directly by the wind.

Of particular importance, in the context of the
closure problem, is the effect of the large-scale
geometry on the instability processes. In the channel
model, since the geometry is zonally invariant,
eddies do not develop at preferred locations along
the flow. If the flow is unstable it is unstable at all
longitudes, and the effect of -the eddies is to
transfer potential vorticity down the local gradient.
The gyre model is more complicated. Here the
presence of meridional walls impose such large
zonal gradients that the regions of eddy generation
are more localized, advective effects greater, and the
regions of eddy decay more extensive. Much of the
basin is populated by decaying eddies, which cannot
be expected to transfer potential vorticity sys-
tematically down the local gradient.

The contrasts between the channel models, with
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simple periodic geometry at the large-scale and the
gyre models, zonally blocked by meridional walls,
.are more fully developed in Holland and Rhines
(1980). They suggest that the zonally blocked flow
regimes will present a more complicated parameteri-
zation problem than the zonally open ones, al-
though in channel flow a diffusive parameterization
for potential vorticity may be appropriate. Accord-
ingly, as a first candidate for modeling we choose
flow in periodic channel geometry. It is in this flow
regime that a diffusive parameterization for potential
vorticity is most likely to give an adequate repre-
sentation of the interaction between the mesoscale
and the large-scale.

3. A zonally averaged channel model

Here a two-layer channel, zonally averaged
ocean model is fomulated. The mathematical model
does not attempt to approximate a real ocean
regime. The same problem is tackled as in the flat-
bottomed open-channel simulations of MHC, except
that here the time and zonally averaged quantities
are dealt with directly, using a low resolution and
gross representations for the eddy field.

The model domain is a zonal channel with a re-
peat length L. The channel walls lie along latitude
circles, a distance L apart. The bottom is flat and
there are no meridional walls. The momentum
source for the mean currents is a surface wind
stress, and the momentum sink is through bottom
friction. It is assumed that the necessary fluxes
needed to maintain the mean currents can be ac-

- complished by a quasi-geostrophic eddy field. The
eddy field is represented through its transfer prop-
erties. There is no small-scale explicit lateral dif-
fusion.

With thermal forcing and appropriate choice of
constants, the model could easily be interpreted as a
two-level atmospheric model (as MHC point out, the
two-layer and two-level equations are identical in the
quasi-geostrophic approximation). The close link
with the zonally averaged parameterized atmospheric
models is then apparent. The particular formula-
tion used here is closest to that of Sela and Wiin-
Nielson (1971).

a. The zonally averaged equations

Integrating the problem with g as a dependent
variable, using the zonally averaged Eq. (6), is
attractive since potential vorticity is a fundamental
' -constraint on the fluid motion. Such an approachis a
considerable simplification from the closure point of
view. For the purposes of the time integration, it is
not necessary to parameterize the eddy fluxes of heat
and vorticity separately, but only the flux of po-
tential vorticity. Further potential vorticity is con-
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served in advection by the horizontal component of
the flow (unlike temperature and vorticity). Its close
conservation on the time scale of the transfer sug-
gests a tendency for the eddies to transfer potential
vorticity down the mean gradient. For a discussion
of the applicability of diffusive parameterizations in
closed and channel ocean models see Holland and
Rhines (1980).

Choosing the overbar in (6) to represent a time and
zonal average, the terms representing advection by
the mean disappear and the model equations become

0q, 4] 1 o7,
—_— = = —— (D ! ’) ———— R 83
' Yy P) i'q, H, 9y (8a)
04, a 1 913
—_—= - —(v3'qs") + ——, (8b
o 5 (v3'qs") H, oy )
where
_ 1 (+T (L,
()= J J ( )dxdt
1L, ) 0

andL, is the repeat length of the channel, long com-
pared with an eddy length scale, and T is the averag-
ing period, long compared with an eddy lifetime.

The Sverdrup balance, which dominates the-
dynamics of the ocean gyres, plays no role here.
A mean geostrophic meridional velocity cannot be
supported by a zonal pressure gradient (by piling up
water between meridional walls). In the upper layer,
the wind-stress curl is balanced, not by the mean ad-
vection of potential vorticity (the S-term), but by
an eddy flux divergence. To this extent eddy transfer
is far more crucial in the present geometry than for
the closed ocean-basin regime.

In the MHC simulation, the eddies are found to
transfer potential vorticity down the mean gradient

‘almost everywhere, suggesting that the transfer may

be modeled as a diffusive process. Accordingly, the
eddy flux of potential vorticity is assumed to be re-
lated to the mean g field through the diffusive
transfer equations

9q: .
vi'qi' = K ";‘ {=1land3, ©

where the K;’s are eddy transfer coefficients which,
in general, can be functions of space and time (see
Green, 1970). Assuming a knowledge of the transfer
coefficients, Eq. (9) provides a closure for the eddy
potential vorticity flux.

b. General considerations

Having adopted a transfer theory, one is then
faced with the problem of how to specify the magni-
tude and spatial form of the transfer coefficients.
In the ocean little is known about the variation of the
K’s in the horizontal and vertical. The form and
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magnitude will depend crucially on the intensity,
length and time scales and the vertical structure
of the eddies. Results can be expected to be sensi-
tive to the particular choice made. Further, one
must be careful in the choice, for it is not possible
to freely diffuse vorticity around without taking
into account basic constraints on the eddy field
(see White, 1977). In particular, it is important that
the parameterized scales should not lead to sources
and sinks of momentum not generated by the ex-
plicitly resolved eddies. Thomson and Stewart (1977)
have highlighted this difficulty in the context of the
work of Welander (1973).

The choice of the form of the transfer coefficients
should be guided by a knowledge of the structure of
the transferring agent. If it is hypothesized that in
fully turbulent flow the eddies are those that would
have amplified from an instability of the mean flow,
then a linear instability analysis can give clues about
the structure. Green (1970) made use of the idea that,
since the shape of the eddies does not unrecog-
nizably change as they reach finite amplitude, much
of the essential structure of the atmospheric cy-
clones and anticyclones can be ascertained from
baroclinic instability analyses of the zonal flow.
One must be apprehensive, however, about the
appropriateness of perturbation arguments for the
transfer properties of fully developed, nonlinear
eddies. Hoskins and Simmons (1978), for example,
show how radically different linear and nonlinear
results can be regarding the Reynold’s stresses. In
any case, the interest is not in the transfers
achieved by one eddy, but the statistical efféect of
many eddies.

In an attempt to develop an approach that does
not rely so heavily on linear theory, and at the same
time to ensure that the parameterized scales do not
lead to any spurious sources and sinks of momentum,
White and Green (1980a) suggested that the gross
forms of the K's should be specified drawing on
our knowledge of the dynamics of the turbulence,
with the finer details determined by adjusting the
forms until a vorticity flux constraint is satisfied.
This approach is adopted here. We will assume that
the eddies are generated by a baroclinic instability
of the mean flow (as in the MHC simulations),
plausibly specify the form of the transfer coefficients
in the light of this mechanism, and then, to give
more detail, exploit the vorticity constraint ap-
propriate to the-channel geometry.

¢. A constraint on the depth integrated meridional
potential vorticity flux

In the case of an eddy defined as a deviation from a
time and zonal average, the eddy fluxes of heat,
vorticity and potential vorticity are related as
follows:
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N 0 ——
Ullfl' = - '(,?y_(ullvl')
———— 2 o ———e et
=0,q, + =0/’ — ), (10a)
g'H,
— 0 —
v3'§3’ = - 5;’(“3'”3')
2
=0yqy — —— v, (' — ¥s). (10b)
g'H,

Eq. (10) may be derived from (7) by integrating with
respect to y. The constants of integration are zero,
for the eddy fluxes must go to zero at the walls.

Multiplying (10a) by H,, (10b) by H; and adding,
the heat flux term vanishes, leaving a relation be-
tween the depth-integrated fluxes of potential
vorticity and vorticity:

0 —— 0 —
~H; — (u,'v,") — Hy — (u3'v3")
dy oy

(11

Integrating with respect to y from one channel
wall to the other (on which u'v’ = 0), the vorticity
flux integrates out to zero giving

= H,v,/'q, + H3vs'qs'.

L
j Hovar + Higqady = 0. (12)

0
Dynamically, (12) ensures the quasi-geostrophic
eddy field cannot provide a net acceleration of the
flow, but merely acts to redistribute momentum

6 L
—'J Hll-ll + H3123dy =0
ot Jo
in the absence of sources and sinks. Substituting in
(12) for the potential vorticity fluxes, using the trans-
fer equations (9), enforces a relationship between
the transfer coefficients.
L 04 dq

J HK, 2 LK, 2B ay =0,
dy oy

0

(13)

For the special case of an infinitesimal wave
amplifying on a zonal flow, (9) are exact relations
with theK’s given by (see Green, 1970; Held, 1975)

g
K; = VkC, —|‘£‘|——|-2-e2"’cl’, i=1land3, (14)

(l‘ll—C

where §; is the perturbation streamfunction from a
mean zonal flow i;, k is the wavenumber and C; is
the imaginary part of the complex wave speed C.
In particular the K’s are positive, and so (13) be-
comes a statement of the Pedlosky (1964) necessary
condition for instability that 84/9y must take on
both signs somewhere in the flow. In the more



262

general finite-amplitude case, if theK’s are positive,
then 8g/dy must again change sign. In the MHC
simulations the K’s are positive almost everywhere
and the potential vorticity gradients have opposite
signs in the two layers, rather than different signs in
the same layer at different latitudes.

d. Specification of the K’s

Here (13) is exploited to give information about
the variation of the K’s in the vertical. The hori-
zontal variation of the K’s is prescribed and (13)
used to relate K, and K.

The K’s are written in the form

K; = kY(y), i=1and3, (15)

where Y;(y) gives the (normalized) meridional
variation of the K’s and k; gives the magnitude.
First, we consider the specification of the merid-
ional variation. For motions of infinitesimal ampli-
tude the K’s [given by (14)] are positive and de-
pend on the distribution of the eddy kinetic energy,
proportional to k2 ] l[;,-]2, but also on the phase speed
of the disturbance relative to the mean flow speed,
|i; = C|2. In baroclinically unstable channel flow
the eddy kinetic energy decreases sharply away
from the region of large temperature gradient in
mid-channel (see, e.g., the plot of ¥,'2, Fig. 4, in

MHC) suggesting that theX profile should be peaked -

sharply in the region of maximum baroclinity. The
K’s, however, also will be large on the flanks of the
jet, where |z'l,~ — C|2 is small, for here parcels of
fluid move only slowly relative to the disturbance
and so suffer large lateral displacements. This
tendency will broaden the meridional profile ob-
tained from a consideration of the eddy kinetic
energy distribution alone. The net effect is likely to
make the K’s large in midchannel, where eddy
parcels readily disperse laterally, and smaller at the
extremities of the jet, where dispersion is inhibited
by the channel walls. The K’s will be zero at the
wall. These gross features are likely to be true
even of the K’s appropriate to fully turbulent flow.
Although, in general, the K’s can be expected to
be non-separable (see White and Green, 1980a), in
view of the lack of detailed knowledge, we prefer
to avoid the complication of specifying two different
functional forms (one for each layer). Instead, as a
crude representation of the essential features of the
horizontal va;iaition, we choose the separable form
i — @]

Yiy) = ¥Y(y) = , i=1and3. (16)

|I'_l 1 [43lmax
The specification is attractive for it models the con-
centration of baroclinic activity in the regions of
large temperature gradients, allows some feedback

between the local flow field and the K’s, ensures
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the K’s are positive and, anticipating the applica-
tion of the no-slip boundary condition, brings the
K’s to zero at the walls.

Having specified Y(y), Eq. (13) is now used to
give the relative magnitude of the K’s. Substituting
for K, and K in (13), using (15) and (16), gives

(%)
k H a
2= —L—-:__yj,— ’ (17
ky H, (3(_13 )
dy
where
L 6"
) j 2 ygy
04 o O

Ydy

is a weighted-average potential vorticity gradient
over the channel, with the weighting function given
by the horizontal variation of the K’s.

The physical interpretation of (17) is clearer if flow
is considered in which the relative vorticity gradient,
0&:/0y is negligible compared with the planetary
vorticity gradient B,. Then (17) can be written in
the form

ks 1+ vy

ky 1—')’3’

where
_H, _ H;
Y1 71_0y s Vs .f-l—(;y ’
and ho = (fo¥/g'Bo)(iy — d3) is
the baroclinic disturbance. ,

Eastward flows (y;, y; > 0) will be unstable pro-
vided that y; < 1—unstable waves extend up into
the top layer, with kj/k, > 1. Westward flows
(1, vs < 0) will be unstable provided that |y,| < 1
—unstable waves extend down into the lower layer,
with 0 < kg/k, < 1. If H, < H; it is easier for a
westward flow to reverse the potential vorticity
gradients in the thin upper layer than it is for east-
ward flows, and so (17) can be satisfied more
readily, The link with Pedlosky’s necessary condi-
tion for instability is clear.

It is through (17) that the closure hypothesis re-
flects the asymmetry in the vertical structure of the
eddies, and the different stability characteristics of
eastward and westward flows. The transfer coeffi-
cients are ascribed positive values (the flow is sup-
posed unstable) provided the ratio ks;/k,, given by
(17) is positive. If (17) is negative, then k, and k;
are held at zero (the flow is supposed stable).

To complete the closure the magnitude of the
K’s is required. Observations and numerical
models indicate (see, e.g., Rhines and Holland, 1979)

the depth scale of
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that a diffusivity of ~10?> m? s™! is appropriate to
quiet ocean regions, and it may rise to a value as
high as 10* m? s™! in vigorously unstable regions.
Here the problem of relating the magnitude of the
K’s to bulk mean flow parameters is not tackled.
Rather, the magnitude is prescribed.

With k, (or k3) fixed, Egs. (9), (15), (16) and (17)
provide a closure for the eddy potential vorticity
flux. With suitable initial and boundary conditions,
(8) can now be integrated forward in time to predict
the new g, and ;. The results of the integration of
the equations represents a practical measure of the
appropriateness of the closure as a representation
of the interaction between the eddies and the
mean flow.

e. The closed set of equations

In (8) the following forms for the stress are
adopted: a sinusoidal surface wind stress

. e
T, = 7o SIn| — 1| ,
L= ( . )
giving a maximum eastward stress in midchannel
and zero at the walls, and a linear bottom-stress law

(18b)

The dimensional variables in (8) are replaced by
nondimensional variables defined by

g: = BoLg/*, y = Ly*,

(18a)

5’3 = H3Ea3.

i = uci;*

L ,
ki = u(:kai*, € = BQLE*, t = (—B')t*
Ue

where u. is a typical channel velocity and Lp is the
Rossby radius of deformation.

Substituting for the eddy flux terms (with the
closure (9), (15), (16) and (17)) the zonally aver-
aged model takes the form of two coupled diffusion
equations with non-constant coefficients, and may
be written (nondimensionalized) as

9q,* ok 0 (Y* _(9(}_1*)
ot* ay* oy*

- y(ilf) cosmy*, (19a)

Ue
8qs* _ Yk a (Y* 0673*>
or* dy* dy*
7 k
+ ye* ";“3* , (19b)
y
where
7 ¥ _ 53 %
R Ll (20)
'ul* - u.‘)*lmax
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ag.*"
ks* 8, oy*
B ___z_y 1
ky* 8; 9g5*
ay*
_ 8'BH 7T ]
Ue = 2 ? s = s
fO HIBOL
Lp
‘y = —
L L e
5, = Hv 5 - Hs
H H
_ (g'H;H:;)”z
Sfo°H

In (22) u. is chosen in anticipation that vertical
shears will build up sufficiently to balance the g,
termin 84/dy. With this velocity nondimensionaliza-
tion, the layer potential vorticity gradients are

04 o, 1
= + — (0% — 5%, 23a
G T BT @t . (3
9ds* R.* xS e
= - — — i3%), 23b
ay* 3 5 (it 3™*) ( )
where
- 2 92y ¥
Br=1-—2—C""U  i=1and3 (4
5,8, Oy*

is the absolute vorticity gradient.

f. Method of solution

Starting from a known initial state (19) may be
stepped forward numerically to give the new values
of g,*, and g4*. To integrate further, it is necessary
to compute the updated velocity field from the
potential vorticity field. This is done by solving the
following equations, derivable from (23) by addi-
tion and subtraction: ‘

8%p* 3
2 b _ - - — - x>
gyrr 0" = Tad S (@~ %), (29)
8%, * o B
2 _ _ -
Y ay*z 8183[1 ay* (8:q:* + 8345 | , (26)
where

L_lp* — 5-51* _ 11—43*
is the velocity difference and
[ll* = 611/-51* + 83123*

is the depth integrated velocity.



264

Appropriate boundary conditions for the solution
of (25) and (26) may be ascertained by considering
the zonally averaged zonal momentum equation.
In the absence of explicit small-scale diffusion, it
can be written as

6 - - =7 7_'1'

—_— U = v E A —

atul fvl l§l H!,
(the zonally averaged Coriolis torque, f v;, contains
only the ageostrophic part of the horizontal flow).

From (27), provided that there is no stress at the
walls (7; = 0), the flow will not accelerate. Thus, if
i2,* and @;* are zero initially, they will remain zero.
Accordingly, the no-slip boundary condition is
applied

=1land3 (27)

=0, 0, 1. (28)

It is a consistent condition in view of the choice of
surface stress, (18a) and the bottom-friction param-
eterization adopted, (18b). The appropriate boundary
conditions for (25) and (26) therefore are

0, 1.

For the time integration of (19), it is not necessary
to impose a condition on g* or 8g*/dy*, but only on
K*3g*/ay*. Eq. (28) is sufficient for it ensures that
[from Eq. (20)] the K’s are zero at the walls—
K*3q*/9y* zero and no eddy potential vorticity flux
through the solid walls.

121* = L-l3* at y* =

u,* = IZD* = 0, at y* =

4. Results
a. Numerical constants

The following constants are chosen to correspond
to those of the MHC simulations:

H =10m, H;=4Xx 10 m
Bo=14x 10" m*s!
L=10m, g =2x%x102ms?
7o = 107" m? s
Jo=10"%s71, €= 10‘7\ s™? L. @9
giving
Lp=4x10m, uc=14x10"ms™?
ug =22x102ms?
e*=7.1x 1073 y=4x 1072,
8§, =2x 10", 8§ =8 x 10 ]

For the above parameters a 2* of 1 corresponds to a
iz of 0.14 m s™ and a Ar* of 1 corresponds to a At
of about three days.

The magnitude of 4,* is fixed and held constant:
Y*(y), however, allows a meridional variation of the
transfer coefficient. MHC estimate from their
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channel simulation an upper layer coefficient of
about 10° m? s7!, A dimensional &k, of 10® m®s™!
corresponds to a nondimensional &,* of 0.18
given (29).

The grid spacing chosen is Ay = 50 km, giving a
coarse resolution compared with the Rossby radius
of 40 km (Ay*/y = 1.25).

For the (explicit) numerical time integration
scheme adopted, there is a limitation on the time
step. The problem is complicated by the fact that
the diffusive time scales in the upper and lower
layers are not the same. The time step must be
less than the upper/lower grid-length diffusive time
scale (whichever is the shorter) :

2
At* < —1—( Ay *) .
k*\ vy
For a Ay*/yof 1 and a k* of 0.1, Ar* < 10, whereas
forak* of 1.0, At* can be only <1, a small increment
when compared with the time scale of the mean flow,
(ye*)™! = 4000. In the early stages of the time inte-
gration, however, the diffusive limitation does not
apply because the Pedlosky-type condition (17) is
negative and so the K’s are held at zero. This not
only prevents numerical instability through attempt-
ing to integrate the diffusion equation backward,
but also enables a much longer time step to be
taken. Only in the later, diffusive stages of the
time integration is the smalil time step required.
The following results are the steady-state solutions
to (19) forthe case k,* = 0.18 and the constants (29).

b. Zonal velocity and potential vorticity fields

The mean velocity (Fig. 1a) consists of two zonal
jets. There are no return flows. The upper and
lower layer jets are similar in meridional structure,
but differ in strength. The upper layer is stronger
than the lower, although the zonal mass flux of the -
lower is greater.

The terms in the layer potential vorticity gradients,
(23) and (24) are plotted in Figs. 1b and 1c. The
mean layer potential vorticity gradients have oppo-
site signs at all latitudes —the upper layer gradients
are large and positive, the lower layer gradients
small and negative. The background reference po-
tential vorticity gradient 8, is severely distorted by
the interface tilt. In the upper layer the interface
tilt is the dominant contribution to 84,*/9y*, intensi-
fying it in midchannel to a value many times 3,. In

- the lower layer the absolute vorticity gradient and

tilt terms are comparable. 8g;*/8y* is a small nega-
tive residual between these two terms. In both layers
the relative vorticity gradient contributes importantly
to the absolute vorticity gradient, particularly in the
lower layer. In midchannel 8£*/dy* reinforces S,
and opposes it at the extremities. Nowhere is the
curvature of the flow profile large enough to over-



FEBRUARY 1981

power B,, and so reverse the absolute vorticity
gradient.

c¢. Balances in the steady-state momentum equations

The steady-state layer momentum equations may
be written
T+ Hw'q) =0,

=73 + Havg'qs” = 0.

(30a)
(30b)

Eq. (30) can be derived from (8) by integrating with
respect to y, and noting that 7, and 7; are zero at
the walls.

The eddy potential vorticity fluxes are shown in
Fig. 1d. In the upper layer the imposed surface wind
stress is balanced by a southward eddy flux of
potential vorticity. In the lower layer the bottom
stress is balanced by a northward eddy flux of
potential vorticity. At each latitude the eddy fluxes
are almost equal in magnitude, but of opposite sign.

Adding (30a) and (30b) together and using (11)
gives the vertically integrated steady-state momen-
tum equation

T — T3+ Ho'é + Hyvy'&' = 0. (31

Eq. (31) expresses the well-known result that the
depth integrated momentum equation only feels the
depth integrated flux of relative vorticity (Green,
1970).

The vertically integrated eddy potential vorticity
fluxes also are plotted in Fig. 1d. Locally the surface
and bottom stresses are almost, but not quite, in
balance. At any latitude the difference between the
surface and bottom stresses is balanced by the height
integrated flux of relative vorticity (= height inte-
grated flux of potential vorticity). The parameterized
scales are transferring momentum into the current.

Integrating across the channel gives the integral

balance
L L
J ';'1 dy = J %3dy .

0 0

(32)

Eq. (32) shows how angular momentum in the at-
mosphere is transferred to the solid earth via the
ocean. Knowledge of this integral balance is auto-
matically incorporated into the parameterization
scheme through the constraint (17).

The upper layer transfer coefficient has a value
(prescribed) of 10° m? s™'. In the steady state the
ratio of the transfer coefficients is

-k—?- = 8.6

ky
giving a lower layer transfer coefficient of 8.6 x 103
m? s7*. The particle diffusivity becomes large in the
lower layer to compensate for the small negative
potential vorticity gradient there. The eddy parcels
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Fic. 1. Meridional profiles for the steady-state solution

ks* = 0.18: (a) Nondimensionalized zonal velocity; (b) non-
dimensionalized upper layer potential vorticity gradient [Eq.
(23a)]; (c) nondimensionalized lower layer potential vorticity
gradient [Eq. (23b)]; and (d) depth-integrated momentum budget
[Eq. (31)] in units.of 107* m? s~2.

disperse more readily here, because they do not
feel the restraining effect of a strong potential
vorticity gradient.

d. Dependence of the solution on k,* and €*

Substituting into the integral stress balance (32),
and using (18), it can be written (integrating, non-
dimensionalizing and rearranging)

[ - 220
o w2 33 \e* )\ uc
So, given the surface stress (and hence ug), the
transport of the lower layer is inversely propor-
tional to €* and is independent of the K’s.

The upper layer steady-state momentum equation

can be written [integrating (19a) with respect to y
and rearranging]

aq.* 1 ( Us )simry*

ay* k*\ayuc) Y*
Our k,* then fixes the magnitude of 8g,*/dy* and
hence [because 8g,*/0y* is dominated by (it *
— U3*)/8,], the magnitude of the velocity difference
between the two layers. )

As k* and €* are varied, the velocity profiles
remain approximately equivalent barotropic. iig* is
insensitive to the value of k,* and (i,* — ;%) in-
sensitive to the value of €*. If the bottom drag coeffi-
cient €* is held constant and the eddy diffusivity
k,* increased, the velocity difference decreases—

(33

(34
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the flow becomes more barotropic because the
eddies are transferring momentum downward more
efficiently. The lower layer potential vorticity be-
comes less negative and, by (17), the lower layer
diffusivity larger.

5. A closure for the heat flux

So far it has only been necessary to make a
closure hypothesis about the eddy flux of potential
vorticity. It is necessary, however, to introduce
additional hypotheses, if it is wanted to decompose
the eddy potential vorticity flux into its component
parts (e.g., to compute the vertical velocity and the
energy exchanges between the mean and eddy
fields).

Here a theory deriving from Green (1970) is
formulated, in the context of the two-layer equa-
tions, and used to predict for the heat flux at the
interface, and hence the layer relative vorticity fluxes.

The eddy flux of heat is related to the mean
fields by the following non-isotropic diffusion equa-
tion (see Green, 1970).

_— J . R
'@ = ') = —Ky — (P — )
dy

1

4
~ Ky =—, (35
f

0

where K, and K, are transfer coefficients defined
at the interface. For baroclinic disturbances, eddy
heat transfer will take place not purely in the hori-
zontal but along planes inclined at some angle. The
second term in K,,, involving correlations between
eddy north-south velocities and ‘vertical displace-
ments, takes account of such baroclinic slope
effects.

As before, a constraint is used to assist in the
specification of the transfer coefficients.

a. A constraint on the layer vorticity flux

Integrating (10a) and (10b) across the channel,
the layer eddy vorticity fluxes vanish to give

L J W@ =y
g

’
0

L___ L____
- -H, J ovagrdy= H, f sgrdy. (36)
)] 0

Eq. (36) applies at all times, but in the particular
case of the steady state, because of (30) it can be
written as

2 (L
E—J v’ (P, — Y )dy = J

’
0

L
Ty =J

0

L
Tdy. (37)

Eq. (37) suggests that, in the present two-layer

formulation, it is instructive to view the interface
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heat flux term as a pressure drag exerted by one layer
on the other. This interpretation is clear once it is
written in the form
oh,

f 0‘1}2’

= I

dx g’

The term is a product of a pressure fy,’ and an
interface slope (0hk,'/8x), and so is in the form of a
drag. It is the mechanism by which the effect of the
surface stress is transmitted down to the bottom.
The pressure drag is an internal transfer of momen-
tum in the vertical, just as the vorticity flux is an
internal transfer of momentum in the horizontal
(see Rhines and Holland, 1979).

0 (0 = Us).

b. Choice of K, and K,,

Substituting for v, (¥, — W3') in (36), using (35),
gives a relation analogous to (13), but this time
between K, and K,

L

[ fr 2

0 dy
If (35) is to be used as the closure, it is important
that the K, and K,, chosen should satisfy this
integral relation. Here K, and the meridional varia-
tion of K. are prescribed. The magnitude of K, is
then adjusted until (38) is satisfied.

Following Green (1970), it is supposed the transfer
coefficients are independent of the transferred
quantity so long as it is closely conserved. Accord-
ingly, K, (defined at the interface) is assumed to be a
weighted average of K, and K, i.e.,

K, = kzy()’)

H, (t ———
= f ardy  (38)

o Jo

- sz)dy = -

(39a)
with

ky = 83k, + 8 ks. (39b)

In the absence of any detailed knowledge of the

form of K,,, its meridional variation is taken to be

the same as K,:
Ky, = ko Y(y). (40)

The magnitude &, is then adjusted so that (38) is
satisfied.

Some interpretation of the relative magnitude of
k.. is possible if, as before, the curvature terms are
neglected in the absolute vorticity gradient (3,
Bs = By). Then (38) may be written [using (15), (16),
(17), (39) and (40)] in the simplified form

N T Y
k,,z=vah, , @n
ks dy

where v is a nondimensional number (a measure of
the efficiency of conversion of available potential
energy) given by '

y = Y13
1 = &1y: + 83ys
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For unstable eastward flows, v, < 1 and

—_
0<V<1; kvz<ah1
kq dy
“and
kye > 0.
For unstable westward flows, |y;| < 1 and
—,
0<v<1; ko | Ph’
2 dy
and
ky. < 0.

The ratio k,,./k,, given by (41), is therefore consis-
tent with the necessary condition that, in order to
release mean available potential energy, there must
be a positive correlation between v’ and z’' in a
positive shear, and a negative correlation in a nega-
tive shear. Further, on the average, typical particle
paths should have a slope (measured by the ratio
k../ks) less than the mean slope of the interface (v
should lie between 0 and 1).

It is worth emphasizing that the profiles of velocity
and potential vorticity and the eddy flux of potential
vorticity (Fig. 1) do not depend on any of these
additional assumptions—they are independent of
the relative contribution that the eddy wave drag
and eddy vorticity flux makes to the eddy potential
vorticity flux.

The interface eddy drag for the steady-state solu-
tion of Fig. 1 has been calculated using the above
closure theory. The eddy layer relative vorticity
fluxes can then be obtained from (10). The de-
composition of the eddy potential vorticity flux into
its component parts is shown in Fig. 2. Fig. 2a shows
the upper layer momentum budget and Fig. 2b shows
the lower layer momentum budget. The eddy drag
makes up the major part of the potential vorticity
flux in both layers, although in the upper layer the
relative vorticity flux contributes significantly. The
wind is a source of upper layer eastward momentum
at all latitudes. Locally the wind stress is balanced
mainly by the interfacial eddy drag, but the eddy
vorticity flux is also important, concentrating the
upper layer velocity. The eddy drag, which is a sink
of eastward momentum in the upper layer, is a
source for the lower layer. The bottom stress is the
ultimate momentum sink, locally balancing the inter-
facial stress. The lower layer eddy vorticity flux
only makes a small contribution to the budget.

6. Comparison with an eddy-resolving channel
simulation

Of the MHC Circumpolar Current simulations,
the channel flow (CH in their notation) corresponds
most closely to the parameterized model. It has a
flat bottom, is driven by a steady wind stress and
there is minimal explicit diffusion. For comparison,
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FI1G. 2. Terms in the layer momentum equations for the
steady-state solution k,* = 0.18. (a) Upper layer momentum
budget 7, + Hyv,'é) — (folg")v.' " — ¥s") = 0; (b) lower layer
momentum budget —7; + Havs &' + (fo%g')v, U, — ¥3’) = 0.
Units are in 10~* m? s~2.

the time and zonally averaged zonal velocity and
eddy statistics of the CH simulation are shown in
Fig. 3. Fig. 3a should be compared with Fig. 1la,
Fig. 3b with Fig. 1d, and Fig. 3c with Fig. 2a.

It is not surprising that the two models develop
mean flows and eddy fluxes of comparable magni-
tude. The bottom-friction coefficient ¢* [which, from
(33), determines the magnitude of the lower layer
flow] is the same in both, and k,* [which, from (34),
determines the velocity difference between the
layers} was chosen to correspond to the upper layer
diffusivity estimated from CH. Further, the eddy
fluxes were constrained to satisfy the necessary
integral balances.

The parameterized model fails to reproduce the
sharper meridional profiles of the explicit model.
Such details depend on the particular form of Y(y)
which, at best, can only be specified crudely. The
eddy wave drag is also less peaked in midchannel
(and hence, locally, the eddy vorticity flux is under-
estimated). The reasons are less clear because of the
additional closure assumptions made in its calcula-
tion: the transfer coefficients for heat and potential
vorticity are assumed to be the same, and it is
necessary to introduce an extra coefficient to take
account of the slantwise nature of this aspect of the
instability.
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F1G. 3. Time and zonally averaged meridional profiles of the
McWilliams et al. (1978) CH simulation: (a) nondimensionalized
zonal velocity; (b) depth-integrated momentum budget in units
of 10~* m? s~2; and (c) upper layer momentum budget in units of
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Despite these differences, the general agreement
is good. The interior fluxes, attributed to a meso-
scale eddy field and incorporated here parametri-
cally, show the same structure and are playing the
same dynamical role as the fluxes achieved by the
resolved eddies of the MHC simulations.

7. Westward flow

The instability properties of westward flows are of
interest in the ocean because westward flows are
more susceptible to baroclinic instability than east-
ward flows. For example, in the Holland (1978) two-
layer model, because the upper layer is thinner than
the lower layer, it is the return flow recirculation
region of the inertial gyres which are often favored
as eddy generation sites. The flow becomes unstable
due to the presence of large negative shears. In this
sectlon, a westward channel flow regime is studled
using the parameterized model..

A negatively sheared flow can easily be produced
by applying a surface stress directed toward the west

- . [Ty
Ty = —To Sln(-z—) .

Fig. 4 shows the steady-state solution for the case

10~4 m? 52, k.* = 1.8. Given (29), the k,* corresponds to a k, of
a b c T
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F1G. 4. Meridional profiles for the steady-state, negatively sheared solution, k,*

= 1.8: (a) nondimensionalized

zonal velocity; (b) nondimensionalized upper layer potential vorticity gradient; (¢) nondimensionalized lower
layer potential vorticity gradient; (d) depth-integrated momentum budget in units of 10~* m? s™2; (e) upper
layer momentum budget in units of 10~* m? s~2; and (f) lower layer momentum budget in units of 10~* m? s~2.
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10* m? s71, and is chosen as a realistic value for an
upper ocean eddy diffusivity in the near field of the
Gulf Stream.

The zonal velocity, Fig. 4a, is negatively sheared
and to the west. The potential vorticity distribution,
Figs. 4b and 4c, is very different from the eastward
flow case. The upper layer potential vorticity gradi-
ent is now negative, and the lower layer gradient
positive. The absolute vorticity gradient and velocity
shear both contribute importantly. The upper layer
gradient is reversed due to the presence of nega-
tive shear.

The terms in the vertically integrated, upper layer
and lower layer steady-state momentum equations
are shown in Figs. 4d, 4e and 4f, respectively. The
wind is the source, and the bottom stress the sink of
westward momentum at all latitudes. The eddy wave
drag acts as the source of lower layer westward
momentum. Momentum is redistributed in the hori-
zontal by the relative vorticity flux, mainly in the
lower layer. The eddy field concentrates eastward
momentum in midchannel. Since the mean flow is
already toward the west, the effect of the eddies is
to retard the mean flow here. The meridional pattern
of eddy relative vorticity flux indicates a net trans-
fer from the mean to the eddy Kinetic energy. The
sharpening of the unstable jets due to upgradient
momentum transfer is not occurring here. The
usually accepted transfer from eddy to mean kinetic
energy is a characteristic of positively sheared
(westerly) flows. Baroclinic eddies developing on
negatively sheared (easterly) flows can be expected
to transfer kinetic energy in the opposite direction.
This is a point made by Held (1975). Some support
for the sign of the kinetic energy transfer occurring
in unstable negatively sheared flow is provided by
the Holland (1978) gyre simulations. Here the return
flow of the inertial gyre becomes baroclinically
unstable, and the effect of the eddies is to retard
the mean flow as suggested by our transfer theory.

In the steady state the ratio of the transfer co-
efficients is ks/k, = 0.11 giving a lower layer diffus-
ivity of k3 = 1.1 X 10 m?> s~ for ak, of 10* m?> s™*. In
contrast to eastward flows, the K’s are biased to
the surface.

If the proposed parameterization scheme is a true
representation of the interaction between mean
flow and eddies, then Fig. 4 should give a reason-
able picture of the mean and eddy fields to be
expected in a baroclinically unstable negatively
sheared zonal flow. The details await verification
from an eddy-resolving channel model.

8. Welander’s potential vorticity transfer theory

Welander (1973) derived an eddy transfer theory
for an ocean gyre which proposed that geostrophic
eddies could generate a net meridional flux of
vorticity due to the pB-effect, and so enhance
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the Gulf Stream transport obtained from linear Sver-
drup theory. Here the two-layer equivalent of
Welander’s continuous formulation is derived, to
put it in the context of the present work.

Substituting in (11) for the eddy fluxes of po-
tential vorticity, using (9), gives

Hpw/'¢&' + Hyvy' &'

g3

- —gk, D4 _ HsKa—g};— . (42)

Welander’s formulation can be regarded as an ap-
proximated form of (42). He made the following
simplifications:

1) The transfer coefficients were not allowed to
vary in space:

Kl = K3 = Ks
Then (42) reduces to
- Huw'é' + Hyvy'&' =

a constant.

~K(H,B; + H3Bs). (43)

The constant K condition is equivalent to approxi-
mating the potential vorticity gradient by the
absolute vorticity gradient.

2) The relative vorticity gradient was neglected in
the absolute vorticity gradient:

Bl = Bs = Bo-
Then (43) reduces to
Huw/'é' + Hyvg'és' =

~KHB,. (44)

Eq. (44) is of the form adopted by Welander and
approximates the potential vorticity gradient by the
planetary vorticity gradient.

The appropriateness of the approximated forms
(43) and (44) to channel flow can be ascertained by
noting that the integrated vorticity flux must vanish,
giving

L
K | Hipy + Hibsdy = 0, )

0

K r Body = 0. (46)

0

From (45), for instability (K > 0) the absolute
vorticity gradient must change sign somewhere in
the flow: the relative vorticity gradient must become
large enough to balance B, allowing a barotropic
instability. If the relative vorticity gradient is
negligible, then from (46), the only possibility is
stable flow (K = 0) and in this case vorticity is not
transferred.

Applying (44) to channel flow would give unphysi-
cal results since it predicts a southwards vorticity
flux everywhere, and so produces a force which is
everywhere toward the west. As Welander (1973)
points out:
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e

. . the predicted westward friction force, —k8, can
be physically realized only in the presence of some
meridional wall. An ocean covering the earth entirely
would, due to this term, be accelerated westward
everywhere, thereby contradicting the angular mo-
mentum conservation principle.”’

Such consequences of vorticity mixing led
Thomson and Stewart (1977) to question the validity
" of Welander’s (1973) application of vorticity transfer
theory and, later, in Stewart and Thomson (1977)
the validity of vorticity transfer itself was challenged
on fundamental grounds. They suggest that, despite
vorticity being .a more conservative and hence a
more transferable quantity than momentum, mo-
mentum transfer theory should be favoured over
vorticity transfer theory because the latter can lead
to non-conservation of overall momentum. How-
ever, vorticity transfer theory is not fundamentally
incorrect because for arbitrary forms of the transfer
coefficient it can violate momentum conservation.
At infinitesimal amplitude the theory is an exact
theory (because the K’s are exactly known) and so
it satisfies all the necessary integral constraints.
Furthermore, in fully turbulent flow, the K’s can
always be chosen in order that a momentum con-
straint be satisfied. Indeed, the existence of a
momentum constraint in our channel model is a dis-
tinct practical advantage for it can be exploited to
give information about the K’s. In the closed ocean-
basin model considered by Welander (1973), though,
because the meridional walls may resupply mo-
mentum and so support a net meridional vorticity
flux, there is no angular momentum constraint.
In this case no extra information about the form
of the K’s can be gained from a consideration of
" the angular momentum.

The westward flow that can occur as a conse-
quence of the mixing of potential vorticity if 6g/8y
is dominated by B,, is illustrated in the laboratory
experiment of Whitehead (1975) which is further
discussed in Rhines (1977). On a homogeneous
B-plane eddies are generated locally in the pre-
viously still fluid by a means that does not supply
angular momentum. Away from the source region
westward flow develops, as one would expect if the
eddies were mixing potential vorticity. In the re-
gion of the forcing, however, a compensatory east-
ward flow develops. Here there is upgradient flux
and the diffusive transfer theory is invalid. .

In our channel model we require the eddies to be
generated by a fluid instability. In this case a Rayleigh
criterion must be satisfied. Then the source region
for the eddies is a dynamically unstable one, and
the northward vorticity flux required to conserve
overall zonal momentum may still be achieved by
downgradient transfer, for the mean potential
vorticity gradient has now changed sign to become
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negative. Here the fluid is accelerated to the east.
In the quieter regions, to the north and south of
the unstable jet, the potential vorticity gradient is
positive (dominated by B8) and, as in the Welander
(1973) closure and the Whitehead (1975) experiment,
there is southward vorticity flux here, and the fluid
is accelerated to the west.

9. Future developments

The present work should be regarded as a pre-
liminary investigation before tackling flow in the
zonally blocked geometry more typical of the ocean. -
It would be interesting, for example, to see if it is
possible to reproduce the lower layer, tight gyres of
the Holland (1978) simulations using a parameterized
model. This is not expected to be a straightforward
task, for here the integral constraints on the eddy
motion are less clear and the appropriateness of a
diffusive parameterization for potential vorticity
doubtful.
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