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ABSTRACT

A flux form of the potential vorticity (PV ) equation is applied to study the creation and transport of potential
vorticity in an ocean gyre; generalized PV fluxes (J vectors) and the associated PV flux lines are used to map
the creation, by buoyancy forcing, of PV in the mixed layer and its transport as fluid is subducted through the
base of the mixed layer into the thermocline. The PV flux lines can either close on themselves (recirculation)
or begin and end on the boundaries ( ventilation). Idealized thermocline solutions are diagnosed using J vectors,
which vividly illustrate the competing process of recirculation through western boundary currents and subduction
from the surface.

Potential vorticity flux vectors are then used to quantify the flux of mass passing inviscidly through a surface
across which potential vorticity changes discontinuously but at which potential density and velocity are continuous.
Such a surface might be the base of the oceanic mixed layer or, in a meteorological context, the tropopause. It
is shown that, at any instant, the normal flux of fluid per unit area across such a surface is given, very generally,
by

o= [Bw-n]
gelQ] ’

where u is the velocity and n is the normal vector to the surface. Here w is the absolute vorticity; B = —gDa/
Dt is the buoyancy forcing, with D/ Dt the substantial derivative and o the potential density; O = —p ‘v Vo
is the potential vorticity; p the in situ density; and g the gravitational acceleration. Square brackets denote the
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change in the enclosed quantity across the surface.

1. Introduction

The theory of ocean circulation draws heavily on
notions of vorticity transport by ocean currents from
places where vorticity is imparted by applied torques
to favorable dissipation sites. This connection is at its
most transparent in classical homogeneous ocean cir-
culation theory based on the absolute vorticity equa-
tion. It is reviewed from this perspective by Marshall
(1986).

Modern theories of ocean gyres, building on the
seminal studies of Rhines and Young (1982) and Luy-
ten et al. (1983), attempt to understand the vertical
structure of the gyre. Reviews can be found in Rhines
(1986) and Pedlosky (1990). Recent studies have fo-
cussed on the role of the mixed layer and its com-
munication with the main thermocline (see Woods
1985; Williams 1989; Nurser and Marshall 1991).
Fluid passes between the mixed layer and the ther-
mocline with a definite potential vorticity setting the
stratification of the main thermocline beneath. To ex-
plain its stratification, we must understand the trans-
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port of potential vorticity (PV), rather than absolute
vorticity, through the gyre.

In the present contribution, a powerful diagnostic
framework, based on the flux form of the potential
vorticity equation, is set out and applied. It allows the
study of potential vorticity changes along isopycnic
layers even in the presence of diabatic and mechanical
forcing.

We review, in section 2, the general flux form of the
potential vorticity equation, first noted by Truesdell
(1951) and Obukhov (1962), and its implications as
encapsulated in the “generalized potential vorticity flux
vector” and “impermeability theorem” introduced by
Haynes and McIntyre (1987). They show that the
(mass-weighted Ertel ) potential vorticity (PV) cannot
be transported across any isentropic surface but must
be transported along such a surface. It can only be
created or destroyed where the surface terminates; in
the present oceanic context, this will either be at the
ocean’s surface or at a solid boundary.

Readers familiar with the foregoing discussion may
move directly to section 3 where the formalism is ap-
plied, for appropriate thermocline scaling, to consider
the creation and transport of potential vorticity through
a gyre. We focus attention on ventilated isopycnic lay-
ers where PV originates from the ocean’s surface. The
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flux form provides a great conceptual simplification of
the ventilation process. In section 4, the principles in-
volved are illustrated by computing generalized poten-
tial vorticity flux vectors (J vectors for short) for so-
lutions of the steady thermocline problem due to Mar-
shall and Nurser (1991). Penetrating insights result
from the nature of the interaction between the mixed
layer and thermocline and the competing processes of
ventilation and recirculation.

Finally, in section 5, the diagnostic framework is
applied to derive the very general expression quoted
in the abstract for the volume flux across a surface at
which potential vorticity changes discontinuously.
Oceanic (thermocline ventilation ) and meteorological
(stratosphere-troposphere exchange) applications are
mentioned.

2. Generalized potential vorticity flux vectors and
the flux form of the potential vorticity equation

Haynes and MclIntyre (1987, see also 1990) have
set out, following on from the earlier work of Truesdell
(1951) and Obukhov (1962), an illuminating view of
PV dynamics. It is based on the following conservative
flux form of the PV equation, an exact result for a
nonhydrostatic fluid:

e
5 (PA+V-J=0 (1a)

where

is a generalized flux of potential vorticity comprising
the advective flux pQu and the nonadvective flux Ny
defined by

(1b)

No=—g 'Bw+FXVa. (1c)

Here

w=20+VXu (2)

is the full three-dimensional absolute vorticity, with Q
the angular velocity of the earth;

B=—-g—
£
is the buoyancy forcing, ¢ the potential density, that
is, the density that a parcel of fluid would have if trans-
ported adiabatically to some reference pressure;*
Du

F="2 L2axu+V
D1 uryr

(3)

(4)

! More precisely, o is the anomaly in the potential density. Here
we shall refer potential density to atmospheric pressure p, and define
(in the ocean) ¢ = p|,-,, — 1000 kg m™; this appears as o, in the
oceanographic literature.
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is the viscous or nonconservative body forces per unit
mass with p the in situ density, and

1
Q=—-—-w'Vg
p

(5)
is the potential vorticity.

For oceanographic applications, it is natural to define
potential vorticity in terms of potential density rather
than potential temperature; signs are consistent with
those in Haynes and Mclntyre (1987) if it is remem-
bered that § has been replaced by — ¢ in the definition

of 0, Eq. (5).
a. Physical interpretation

Equation (1) is unusual and unfamiliar in as much
as terms associated with diabatic and mechanical forc-
ing appear in the definition of a flux rather than as
“source” terms. In the more familiar equation for the
rate of change of potential vorticity following a particle,

D 1 1
Y =—@w:VB—~-(VXF): Vo,
Dt gp p
where D/Dt = 8/t + u- V. There are two terms in-
ducing material tendencies:

(6)

1) gradients of buoyancy forcing in the direction of
w that generate stratification in the direction of w and
hence PV and,

2) curls of body forces that lie on surfaces of con-
stant o.

Noting that V-w = 0; V X V¢ = 0, we can rewrite Eq.
(6) in terms of the nonadvective flux Ny, thus

DQ 1

D P V-Np.
The continuity equation then yields (1a).2

It is this reformulation of the tendency terms in Eq.
(6) in terms of the divergence of the nonadvective flux
N, that permits the flux form (1a) to be written without
any source terms, and so take the form of an absolute
conservation law in the general “physics” sense.

The terms that make up Ny in Eq. (1c) can readily
be interpreted physically. Any body-force F over a lim-
ited region spins up (down ) fluid to its left (right), thus
inducing a sideways transfer of potential vorticity.
Likewise, cross-isopycnal mass fluxes driven by buoy-
ancy forcing will, in the presence of vertical shear, bring
horizontal momentum upward and downward into the
isopycnal sheet, again effecting a transfer of potential
vorticity. Examples that serve to illustrate the physical
principles involved can be found in Haynes and
Mclntyre (1987) and MclIntyre and Norton (1990).

2 The coefficient of thermal expansion for seawater increases with
pressure (see e.g., McDougall 1987), so the solenoidal triple product
p7![Vp, Vp, Vo] # 0 at depth and should appear in (6). This implies
an additional term in the definition of the nonadvective flux Np,

(lc).
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b. The impermeability theorem

A central result of the work of Haynes and Mclntyre
(1987) is that there is a simple and very useful restric-
tion on the direction in which net PV transport can
take place. They show that ¢ surfaces are impermeable
to PV even in the presence of buoyancy forcing and
Jrictional forces—the “impermeability theorem.”

By using the identity

(ut-Vo)wt + putQ =0,

where the component of u perpendicular to the surface
of constant ¢

u-Ve
wt=——-V
Vo2 "’
and the corresponding component of w
L Vo v
w —|V0|2 a

to eliminate the g~'Bw' term, McIntyre and Norton
(1990) wrote down a form of Eq. (1) that makes the
theorem explicit:

J=putQ+ pu'Q — g7 'Bu' + F X Vg. (7)
Here
do /Ot
ol — __ V
u Vol? o

ul=u—u*

o= w— '
The vectors u' and o' are parallel to ¢ surfaces. The
vector u°* is the velocity at which a ¢ surface moves
normal to itself. Thus, the first term in Eq. (7) allows
the flux to follow the moving surface, but it cannot
pass through the surface.

Next we will specialize the very general statement
(1) to the oceanic problem, adopting a simple but re-
alistic model of mixed-layer dynamics and thermo-
dynamics overlying an ideal-fluid thermocline.

3. The ventilation of the thermocline from a surface
mixed layer

Figure 1 shows a schematic diagram of the subtrop-
ical gyre; fluid circulates on isopycnal layers that out-
crop into a mixed layer where they are exposed to
buoyancy and mechanical forcing. Here the subtropical
gyre experiences water-mass transformation, particu-
larly along the deeply convecting outcrop lines on the
northern rim of the gyre.

The flux of mass and potential vorticity between the
mixed layer and the thermocline is crucial to our un-
derstanding of the structure of gyres. It is useful to
focus on the budget between isopycnal surfaces com-
prising fluid between ¢ and ¢ + d0, the isopycnal sheet
stippled in Fig. 1. The flux form of the potential vor-
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FIG. 1. A schematic diagram showing an isopycnal layer (stippled)
outcropping into the mixed layer of a subtropical gyre. The thickness
of the layer subtended at the surface is Ao in the thermocline Az.
The velocity of a fluid particle in the isopycnal layer is resolved into
two components; one component is in the layer, the other perpen-
dicular to it. A typical scale of the gyre is L, a typical mixed-layer
depth is A.

ticity equation presented in the previous section pro-
vides a very general framework in which to conduct a
discussion. The impermeability theorem is of particular
utility; it tells us that isopycnal surfaces are imperme-
able to potential vorticity, even when F and B are pres-
ent. As the mixed layer undergoes its seasonal cycle of
deepening and shoaling, outcrop lines “march” back
and forth. Buoyancy forcing of the mixed layer will
drive a flux of mass laterally through the vertically in-
clined isopycnal surfaces. However, because isopycnal
surfaces are completely impermeable to potential vor-
ticity, the flux of potential vorticity between two iso-
pycnal surfaces must emanate from the free surface or
a solid boundary, providing a great conceptual (as well
as computational ) simplification.

Below, the relative magnitudes of the terms are es-
timated that make up the generalized PV flux in an
isopycnal sheet appropriate to the gyre-scale. Conti-
nuity of this PV flux at the base of the mixed layer will
lead, in section 5, to quantitative information about
the rate of subduction of fluid to and from the mixed
layer. A key quantity in our scaling is the ratio of the
“mouth” to the “throat” of the isopycnal sheets, de-
fined as follows.

Let the area of an isopycnal sheet exposed at the sea
surface be A/Ax (the mouth) and the vertical thickness
presented by the sheet to the thermocline (the throat)
be AzAXx (see Fig. 1). Then the ratio of these areas Az/
Al is of the same order as the slope of the mixed-layer
base or the isopycnal slope, both of O(h/L), so

Az h - 200 m

—~——=2X107%

AL 10°m (82)
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where L is the lateral scale of the gyre (~1000 km)
and # is a typical mixed-layer depth ( ~200 m).

The other small parameter in our scaling is the
Rossby number appropriate to the gyre-scale flow:

u 10cms™!

= —_——— e ———= 1 _3,
JL 107571 10°m 0

Ro (8b)

where u ~ 10 cm s™! is a typical horizontal flow ve-
locity and f~ 107* s~ is the Coriolis parameter. Thus,
horizontal currents are closely in geostrophic balance,
and the relative vorticity of a fluid parcel is much
smaller than the planetary vorticity.

a. Dynamical assumptions

Following Marshall and Nurser (1991), we assume
that the isopycnal surfaces that make up the stratified
thermocline outcrop “smoothly” (i.e., in a manner
consistent with there being no density jump) into a
vertically homogeneous mixed layer of variable density
o, and thickness /. It is supposed that B and F will
only be nonzero in this mixed layer exposed to me-
chanical forcing by the wind and buoyancy fluxes
through the ocean’s surface. Our diagnostic framework
will accommodate time dependence and take full ac-
count of the seasonal march of the surface outcrops
and mixed-layer depth.

Mechanical forcing will be confined to a thin surface
Ekman layer; below the flow is assumed to be in hy-
drostatic and geostrophic balance:

i
u=—kXV
£ of P
5 9
ﬂ"-+a,,,g=0
9z

The thermodynamic equation within the mixed layer
is, from (3),
do,,

—57 +u,-Vo,,=—B/g,

where
u, = ug + u, + O(Ro) (10a)

is the purely horizontal velocity made up of the Ekman
drift
Lux ¥
of 9z
(here k is the unit upward vector and 7 the lateral shear
stress), U, is the geostrophic current, and other ageo-
strophic contributions, of O(Ro), are neglected.
It is a considerable simplification to partition B into
a part, By, associated with Ekman drift across density
surfaces; part, B,, balancing geostrophic advection of
density and the density tendency; and a remainder, of
O(Ro), associated with other ageostrophic advection:

B = Bg« + B, (11a)

(10b)

U =
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where
B -Lux¥.vw
= — - Tme
Ek of oz

Therefore, the thermodynamic equation becomes

(11b)

9o,
a_t + llg'VUm = —Bg/g.

Note that since

d d du
— = —_— — . V = - ——s . V = 0’
9z ¢ & 0z Y Ve g 9z 7
B, must be uniform throughout the depth of the mixed
layer. This uniformity of the buoyancy-flux conver-
gence allows us to relate B, to the surface buoyancy

influx by integrating ( 11) through the mixed layer:3

(12)

(13)

0 0
th + f BEde + O(RO) = f Bdz = $in,
~h -h
where B, is the surface buoyancy influx

zin = g(% - ﬁs&in) s

e (14a)

which includes the heat input per unit surface area #,
and the salt influx per unit area &;,; a is the thermal
expansion coefficient; 3, the contraction coeflicient for
salinity s; and Cy the specific heat of water. Hence,

B
B, = Tt + O(Ro),

where the net buoyancy flux, the depth integral of that
taken up by the geostrophic flow,

3net = zin - zﬁk,

(14b)

(14c)
with

0
Bo= [ Badz = gk X1 Vo), (14d)
—h

the buoyancy flux taken up into the (vertically inte-
grated ) Ekman drift.

b. Potential vorticity flux at the ocean surface

The flux of potential vorticity from the atmosphere
into the ocean is of fundamental importance. It is given
by the vertical component of J at the surface of the
ocean. Now within the Ekman layer, from Eq. (1b),
the vertical component of J is

1 i
J.=pOw — g 'Bw, + ~kK X = -Va,,, (15)
p 0z
where we have substituted F = p~'9r/dz, the body
force in the Ekman layer.

3 Since density is continuous at the base of the mixed layer, there
are no entrainment fluxes.
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The J flux upward across the ocean surface, where
w = 0 (making the rigid lid approximation), is then,
using (11) to eliminate the body-force term, simply

J: = ——f% + O(Ro).

(16)
Remarkably, the wind-stress forcing does not explicitly
appear in Eq. (16), but is implicit in (14) linking B,
to the surface buoyancy influx.

¢. Potential vorticity flux in the mixed layer

We avoid an analysis of the J field within the Ekman
layer, which is sensitive to the detailed turbulent dy-
namics,* by considering the field of J in that part of
the mixed layer that interacts with the thermocline—
the body of the mixed layer, which is forced thermo-
dynamically but not mechanically.

1) VERTICAL COMPONENT

Here F =0 and Bg, = 0, so
J. = pQw — fg7'B, + O(Ro). (17)

The advective flux of Q is just pQw; — fg~'B, is the
nonadvective contribution. In section 3c(3) we will
show that pQw is also O(Ro) so that, to O(Ro), J, is
continuous across the Ekman layer.

2) HORIZONTAL COMPONENT

From Eq. (7), the horizontal component of J is
J = pQ(u™ +u) — g7'Bul, (18)

where u'' and o' are components parallel to the con-
tours and u°* is the component of the velocity of the
outcrop normal to itself (see Fig. 1). The speed with
which the contours march seasonally |u’| ~ 2000
km/6 mo ~ 10 cm s™', so |u°t| = |u'|. This time-
dependent part of J, which allows the flux to follow
the isopycnal surface, is important. It should be em-
phasized, however, that by the impermeability theo-
rem, even though there will be a flux of mass through
the vertically inclined isopycnal surfaces of the mixed
layer as occurs when there is diabatic heating, there
can be no flux of potential vorticity across isopycnal
surfaces.

Furthermore, if the horizontal component of the
relative vorticity is evaluated geostrophically using the
“thermal wind” equation,

v, Ju
R

g
-£y
9z ’ oz Tm

of ()

4 It can be shown, however, that for typical oceanic Ekman layer
thicknesses, the scaling described below in section 3c¢(3) remains
valid.
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we see that w',',g = 0. Hence, evaluated geostrophically,
Jy is simply

35 = QP (ut + u}) (20)
where Q has been replaced by
. 1 g
M = — — e Vo, = — — (Vo,,)> 21
4 P hg sz ) ( )

makﬁng use of Eq. (19), and u! has been replaced
by ug.

3) SCALING ESTIMATES

Now we estimate the relative magnitude of the terms
in the expressions for J [Egs. (17) and (20)]. First
consider J;:

QW 1oQfwl _w
&Bsl "~ Tlugl Nonl  fh

where £ is a typical mixed-layer depth and use has
been made of the thermal wind Eq. (19) to estimate
u, and Eq. (21) to scale O7"".

A very generous upper limit on the mixed layer w

is obtained by assuming w ~ uh/L, where by (8b),

lpQw| u
—— ~ — = Ro <€ 1.
¥/4 lBgl SfL
We may conclude that the vertical component of J
is, on the large scale, entirely dominated by the buoy-
ancy forcing term, and so (17) can be replaced by

J.=—fg"'B,. (22)
How large is the horizontal component of J? By (8),
the ratio
Il mix
|pq:lgl _ |pQ7 " ul ~l=£RO>1;
lfe7' Bl  flug||Vanl

fh R

so the horizontal and vertical components of J are
comparable in magnitude.

Thus, for geostrophic scaling the leading terms, hor-
izontal and vertical, of the J, flux within the mixed
layer are given by

Jrx = pQF™(uzt +ul)) - fg7'B,k.  (23)
Note that although the horizontal and vertical terms
of J, are of the same magnitude, the total vertical flux
carried within the mixed layer ~ L2f|g™'B,| and
dominates the total horizontal flux ~ RoL?f|g™'B,|
by the large factor Ro™! ~ 103,

The PV flux from the mixed layer into the ther-
mocline across the base of the mixed layer, which slopes
with gradient s/L, is thus completely dominated by
the vertical, thermodynamic flux:

h
11+ 71kl ~ 1Jz1(1 + O(Ro)) ~ \fg™' Byl

This is, to O(Ro), the same flux as is incident across
the sea surface [Eq. (16)].
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The dominating importance of the vertical flux over
the horizontal can also be seen by considering flux di-
vergences that induce material tendencies of potential
vorticity. Formally the vertical divergence

9| | /&5,
0z h

dominates the horizontal divergence |V,Ji| ~ Ro
X |fg~'B,/h|. Within the mixed layer, however, B, is
independent of depth [Eq. (13)], so the leading order
of the vertical flux divergence disappears. The balance
in the potential vorticity equation must lie between the
tendency term, the horizontal divergence, and the ver-
tical divergence of the heating associated with the
ageostrophic flow.

d. Potential vorticity flux in the thermocline

Flow in the thermocline is assumed to be free and
adiabatic; thus, potential vorticity is conserved follow-
ing the motion on isopycnal surfaces. The nonadvective
flux N = 0 and J reduces to the adiabatic flux

J* = pQ™s = pQFw, + pQywk. (24)
Under normal thermocline scaling,
do
th _ o 99
Oy =—f . (25)

If this is compared to the PV per unit volume in the
mixed layer,

. u
panx ~ —wp* Vo, ~ ;l' |V¢7m|a

it is clear that
th

el 1
o™ Ro "’
Thus, the horizontal and vertical advective fluxes of Q
in the thermocline are greater than the corresponding

advective fluxes in the mixed layer by a factor 1/Ro.
Hence,

(26)

e The vertical advective flux in the thermocline is
of the same order as the nonadvective vertical flux in
the mixed layer due to buoyancy forcing:

1 i - mix
1pQ2w] ~ == [pOF™wl ~ Lfg™' Bl ~ 2%,

. » The horizontal advective flux in the thermocline
" is a factor L/ A larger than the mixed-layer vertical flux:

1 . L .
th mix mix
Ul ~— ul ~— |J],
|pQgul Ro lpQg " ul p [
but the flux carried between two isopycnal surfaces
(vertical in the mixed layer; quasihorizontal in the
thermocline) is comparable. Both vertical and hori-
zontal @ fluxes in the thermocline are dynamically
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significant; vertical and horizontal divergences
|pQFwl/h and |pQYu|/L are both ~ | J™*|/h.

4. Diagnosis of a steady thermocline model using J
flux vectors

Solutions are now diagnosed from the steady ther-
mocline model developed in Marshall and Nurser
(1991, hereafter MN), which is a large-scale model
appropriate to the Sverdrup interior. A continuously
stratified thermocline—® and ® in the vertical section
of the model (Fig. 2)—is overlain by a vertically ho-
mogeneous mixed layer ® and @ of variable depth and
density. This mixed layer is exposed to mechanical and
thermodynamic forcing. The mixed-layer depth of the
model 2(x, y) is best interpreted as representing annual
maximum (late winter) values.

The thermocline is divided into a motionless abyss
@ and a moving thermocline @ by the “bowl” z
= —D(x, y). Within the moving thermocline, the large-
scale potential vorticity Q = — fp ' da/dz is specified
as a function of the Montgomery potential and poten-
tial density, even on those isopycnal surfaces that out-
crop into the mixed layer. This permits a formulation
in which the complete solution, including the structure
of the thermocline and the thickness of the mixed layer,
depends only on the fields of mixed-layer density and
Ekman pumping. Solutions are found by solving the
thermodynamic equation for the mixed-layer density
by the method of characteristics with the prescribed
wind and buoyancy forcing. Purely for simplicity—it
is not required by the formulation of the model—the
potential vorticity distribution is chosen to be uniform
on each isopycnal surface wherever the fluid on that
surface is in motion. The reader is referred to MN for
precise details of the formulation.

The thermocline model has previously been used

FIG. 2. A schematic diagram of the vertical structure of our idealized
thermocline model showing ® the shallow Ekman layer, @ the ver-
tically homogeneous mixed-layer of depth /#(x, ¥) and potential den-
sity o.,(x, y), and @ the moving thermocline waters separated by
the “bowl” z = —D(x, y) from @ the resting abyssal fluid with ref-
erence stratification ¢ = go(z).

4
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(MN) to examine the flow of idealized subtropical and
subpolar gyres and in Nurser and Marshall (1991,
hereafter NM) to study the entrainment and subduc-
tion of fluid into and out of the mixed layer. Here we
present and diagnose subduction in a subtropical gyre
in terms of J vectors. An idealized pattern of Ekman
pumping is used to drive a subtropical gyre in a rec-
tangular basin, which is gently warmed by a surface
heat flux so as to induce subduction.

Details. Note that all results have been calculated
using full spherical geometry and so are presented in
terms of longitude A and latitude . The model sub-
tropical gyre Aw < A < Ag; Os < 6 < By, with Ay
= —80°, A\g = —20°%; 65 = 15°, 8y = 40° is exposed to
the Ekman pumping field:

vt T .
W, = Wi sm[ B — O 27)
with a maximum Ekman pumping w* = —1.5 X 107¢

m s~! =~ 47 m yr~!. The pattern of Ekman pumping

is plotted in Fig. 3a.
The mixed layer receives a net buoyancy flux,

(83
ﬁnet = % Hpet

where the net heating field, plotted in Fig. 3b, is given
by

(28a)

(a) Wk (m/yn)
40 :
-10
20
430
40
304
40
20 -30
20
-10
0 ' 60 ' 40 o .20

(b) Hnet (W/mz)
40

i 5

10
15

30

_1

15
10

20 s

80 T %0 T a0 7 20

F1G. 3. The forcing applied to the subtropical gyre. The model
subtropical basin extends from 15° to 40°N and from 80° to 20°W:
(a) contours of Ekman suction in m yr™!, and (b) contours of net
heat input into the mixed layer, in W m™2,
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(28b)

Fnet = H pet Sinz[M] .

Oy — B

The maximum heating rate # ¥, is set to 20 W m™2.
Note that #,.. = #n — #g« [ cf. Eq. (14¢)] is the sur-
face heat input less the advection by the Ekman drift.
The prescription of % is merely for convenience; it
is #,. rather than 2, that controls the pattern of sub-
duction.

Vertical structure. The motionless fluid underneath
the “bowl” of moving fluid takes up the “reference
stratification,”

27 — B, (400 + z), if z < —400m
oo(z) =

27 — By(400 + z), if z>—400m

where B, = 1 kg m~/km; By = 3 kg m™?/km. Within
the bowl of moving fluid we specify

doq
9z’

where f; is the value of falong the line of zero Ekman
pumping on the northern edge of the subtropical gyre.
Thus, Q is homogenized to the value possessed by fluid
with the reference stratification o = op(z) lying on the
northern edge of the gyre.

Boundary conditions. The mixed-layer density is
specified to increase moving northward along the east-
ern boundary according to

Om| rz20ow = 26.0 + 0.04 X (6° — 15).

Q=~fo'

No flow, however, is permitted across the eastern
boundary within the thermocline; here the bowl co-
incides with the mixed layer. Thus, by thermal wind,
the mixed layer carries a net geostrophic transport into
the eastern boundary. This flux is small, totaling 2-3
Sv (Sv = 10°m? s~') over the whole eastern boundary
15°-40°, compared with the total gyre transport of
~30 Sv. It can be considered to return as an offshore
Ekman drift or as an eastern boundary current.

It should be noted that, because the flow is eastward,
the above boundary condition is an outflow condition;
we integrate backward along characteristics. This seems
less natural than specifying the inflow, as in MN and
NM, but conveniently ensures no flow within the ther-
mocline across the eastern boundary.

A condition is required where the flow is outward
through the western boundary, as occurs over the
southern half of the boundary; we choose

a'ml)\=80°W = 260 - 015 X (00 - 15)

This decrease of mixed-layer density moving northward
on the western boundary (contrasted with the north-
ward decrease on the eastern boundary) models the
increase in temperature toward the west, seen in the
subtropical oceans.

Pattern of flow. The steady solution is presented in
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Fig. 4. The mixed-layer density contours—the outcrop
lines of the isopycnal surfaces (Fig. 4a)—are swept by
the clockwise flow around the subtropical gyre with the
warmer, lighter water at its center. The mixed-layer
depth contours are more zonal, deepening to 400 m
on the northern edge of the gyre. The meridional hy-
drographic section (Fig. 4c) reveals that the vertical
structure of the gyre has a pronounced north-south
asymmetry with the bowl rapidly deepening to the
north. Note how the lighter isopycnal surfaces outcrop
into the mixed layer. The near-surface stratification is
strong, with weaker stratification below.

F1G. 4. Solutions for a subtropical gyre exposed to heating: (a)
contours of surface potential density o, (b) contours of mixed-layer
depth (in meters), and (c) meridional section at 80°W. The mixed
layer and motionless abyss is stippled heavily; the moving thermocline
is left blank. Isopycnals are plotted every 0.2 kg m~3. (d) Contours
of the Montgomery function on the isopycnal surface o = 26.2, in
units 10° N m~2. The stippled region denotes where the surface has
outcropped into the mixed layer. (¢) The S field in units of m yr™".

The flow on the ¢ = 26.2 surface is presented in Fig.
4d. Along the outcrop line fluid is subducted into the
thermocline from the mixed layer. It then becomes
involved in the clockwise circulation of the gyre and
eventually exits into the western boundary current.
Much of the fluid to the west, however, is unventilated:
it simply recirculates out of, and then back into, the
western boundary current without ever passing through
the mixed layer. The subduction rate, the rate at which
fluid passes from the base of the mixed layer into the
thermocline, is plotted in Fig. 4e. In this particular
solution it is similar to the Ekman pumping field, Fig.
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3a; although, in general, it can be quite different—see
the examples given in NM.

a. The flux of potential vorticity between isopycnal
surfaces

Fluid parcels in the thermocline of our model, where
diabatic forcing is zero, are constrained to follow iso-
pycnal surfaces. It is natural, then, to inquire into the
flux of mass and potential vorticity between density
surfaces. The prohibition of any PV flux across density
surfaces in the mixed layer by the impermeability
theorem also suggests the utility of considering the
fluxes integrated between density surfaces.

In the mixed-layer isopycnal surfaces are vertical.
The total flux carried between outcrops whose (poten-
tial) densities differ by do and therefore lie a horizontal
distance do/|Vo| apart is then |J™*|do/|V | per
unit distance along the outcrop (see Fig. 5).

Similarly, the flux carried between these isopycnal
surfaces in the thermocline is

a3
1J®|do/|Vo| ~ J‘“a—z

do
o

per unit distance perpendicular to the direction of J*
(see Fig. 5). Since |J™| ~ L|J™*|/h, the magnitudes
of these fluxes, |J7 |da/|Ve| and |J™dz/d0|da, are
similar.

FIG. 5. A schematic diagram defining the mouth and the throat
of the isopycnal layer through which the transport of potential vorticity
is computed.
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We introduce the notation J, for the flux carried
between two isopycnal sheets. In the thermocline the
flux of PV between ¢ and ¢ + do is given by

0z
Jgih = ZZ g _ thy,
© do ﬂQ
where u, is the velocity on isopycnal surfaces and
= p|8z/da| is the mass density in ¢ coordinates. Thus,
in the thermocline we plot the vectors

I = wQ" (g, v, 0) = f(t, 0, 0)  (29)

where 1, and v, are the geostrophic velocities on iso-
pycnal surfaces.

The vanishing of the divergence of this flux in our
steady thermocline model is a statement of linear vor-
ticity balance:

Vh‘JLh = 6vg+th-vg = 0.
In the mixed layer,

mix _ __ fBg

" (30
21 Va0l )

is plotted, where B, is given by Egs. (14) and (28) and
the scaling 1/]{V, ¢} takes account of the spacing be-
tween isopycnal surfaces at the sea surface.

We now present J, vectors in the thermocline J¥,
Eq. (29), and in the mixed-layer J™, Eq. (30), for
the thermocline solution described above.

b. Jvectors

Figures 6a—c present perspective plots of J vectors
on successively deeper isopycnal sheets, o0 = 25.4, 26.2,
and 27.0, in the upper 800 m of the subtropical gyre
viewed from the southwest. The J vectors in the mixed
layer point vertically downward; here PV is being cre-
ated diabatically and flows into the thermocline
through the base of the mixed layer. Note that the
magnitude of the PV flux—the length of the J vectors—
is set in the mixed layer by the strength of the diabatic
processes and continues undiminished into the ther-
mocline; in this steady model, the J flux is nondiver-
gent. The shallow ¢ = 25.4 surface is totally ventilated;
all mass and PV is fluxed down from the surface with
no recirculation from the western boundary. On the ¢
= 26.2 surface, however, both ventilation and recir-
culation are evident. Here J vectors emanate both from
the western boundary and the mixed layer—ventilation
occurs predominantly on the eastern side of the gyre,
with recirculation dominating on the west. The deepest
layer presented, ¢ = 27.0, is completely unventilated.
The PV is fluxed in entirely from the western boundary
to where it returns after its circuit around the gyre.

It is useful, drawing an analogy from classical E-M
theory, to describe the pattern mapped out by the J
vectors as PV flux (or J) lines. They display, in a very
pictorial but quantitative way, the complementary



VOLUME 22

JOURNAL OF PHYSICAL OCEANOGRAPHY

592

WA

A

i
LA *
2 ..ewn.mb \‘.\

/)
2

7
\

oy,
N

it
()

~ M_}\« )

7,
o'

FiG. 6. Perspective plots of the upper 800 m of the subtropical gyre, viewed from the southwest, showing J vectors on successively deeper

isopycnal surfaces ¢ = 254, ¢

26.2, and o = 27.0. Each surface appears as a net; its depth is contoured every 25 m. The “wall” denotes

where the surface outcrops into the mixed layer. A color scale is used to represent the potential density field, both at the surface and on the
vertical planes. Each color covers a density range of 0.1 kg m=. The mixed-layer base is delineated by a dashed line and the ‘“bowl” by the

dotted line.
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processes of ventilation and recirculation acting to
shape the gyre. They remind us, in particular, of the
intimate connection between, on the one hand, ven-
tilation and mixed-layer thermodynamics and, on the
other, recirculation and the dynamics of the western
boundary current.

It is interesting to revert to a Lagrangian perspective
for a moment and consider how the PV of a particle
moving out of the mixed layer into the thermocline is
changed. Fluid particles in the mixed layer of our model
have very small (essentially zero) values of PV. How-
ever, at the base of the mixed layer there is a é-function
source on the rhs of the tendency equation, Eq. (6),
as the buoyancy forcing B changes discontinuously
from a finite value within the mixed layer to zero in
the thermocline. It is here, at the base of the mixed
layer, that a particle passing through has its PV im-
pulsively set. The flux perspective is unfamiliar but
simpler. The J vector is continuous at the base of the
mixed layer,” but its manifestation suddenly changes
from a nonadvective diabatic flux in the mixed layer
to an advective adiabatic flux within the thermocline.

5. Buoyancy-driven mass fluxes: A general statement

Expressions for J have been written both in the
mixed layer and the thermocline under appropriate
thermocline scaling. In the presence of buoyancy forc-
ing the J flux in the mixed layer must have a com-
ponent directed vertically and thus ‘“communicate”
with the thermocline. We now consider in more detail
how this flux crosses into the thermocline and derive
a very general expression for the subduction rate.

Initially, full generality is retained, and the buoy-
ancy-driven volume flux of an inviscid fluid is com-
puted across any surface at which there is a disconti-
nuity in potential vorticity jumping from Q) to Q> (see
Fig. 7a) but at which potential density and velocity are
continuous. Such a surface could be the base of the
mixed layer or, in a meteorological context, the tro-
popause separating stratospheric and tropospheric air.
Suppose the “downward” (i.e., inward on the ;| side,
outward on the , side) unit normal to the surface under
consideration is n.

Let us first assume steady-state conditions. Then the
component of J across the surface is continuous with

Ji*n=J,+n,.

Velocities are also assumed to be continuous, and
furthermore, the flow to be inviscid (F = 0), so

Ji*n=pQu'n—-g'Biw*n
Jz-n=pQ2u-n—g_'B2w2-n. (31)

Hence, the volume of fluid subducted (i.e., passing
from | to ;) per unit area is

5 This is only true because we have assumed a steady state.
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FiG. 7. (a) The transport of volume and the flux of Q is considered
across a surface, defined by the unit normal n, at which the potential
velocity changes discontinuously. (b) The control volume, fixed in
space, through which the surface moves with velocity uy.

=[Bw]-n
Se=wm="rlor’

where the brackets denote the jump (; — ) in the
quantity across the surface and the subscript , denotes
per unit area of the surface.

Equation (32) can also be recovered when the sur-
face moves through the fluid if .S, is interpreted as the
flux through that moving surface. Consider a control
volume fixed in space: a flat pillbox (Fig. 7b) paraliel
to and surrounding the surface of area d4 and thickness
dn. The unit normal is again n. Suppose that the surface
moves with velocity u,. Since the surface moves
through the pillbox, the pillbox contains regions where
O takes on both values Q; and Q,.

The PV flux equation ( 1a) yields

9

al’
Since the change in the total pQ contained within the
pillbox simply reflects the downward propagation of

the surface through the control volume, it can be ex-
pressed

(32)

QdAdn = le-ndA —sz-ndA.

d
% f pQdA = p[Q]us- n.

Substituting for J, and J, from (31), we obtain
p[Qlusn = p[Qlu-n— g7 [Bw]-n.
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Thus, the rate, S,, at which fluid is subducted across
the moving surface per unit area is

[Bw]:n
grlQ] -

Thus, (32) holds for the time-dependent case also. It
is an exact statement for inviscid flow.

It is now applied to our thermocline ventilation
problem.

Se=(u—up-n=

Ventilation rates of the oceanic thermocline

Imagine that the surface under consideration is the
base of the mixed layer, lying at a depth / below the
ocean surface. Within the mixed layer Q = Q™*, while
in the thermocline Q = Q™. The unit downward nor-
mal to the mixed-layer base is

—k — V,h
V1 + (V,h)?

The vertical component of n is O( 1) and the horizontal
component of nis of O(/4/L). Flow in the thermocline
1s supposed to be adiabatic, with B = 0, while the mixed
layer is exposed to buoyancy forcing, so B # 0. Fur-
thermore, for thermocline scaling, w ~ fk and Q™
> O™, and Eq. (32) reduces to the result quoted in
NM:

B,
goo™

where S = S, V1 +(V,h)> = S, + O(Kh?/L?) is the
subduction rate per unit horizontal area and n has been
approximated by k + O(h/L); B, is given by Eq. (14).

Equation (33) has been derived (and studied in de-
tail) before (see NM) from a more phenomenological
perspective. It is now seen in the context of the gen-
eralized potential vorticity theorem,; it has been derived
here without any reference to the detailed mechanistic
considerations presented in NM. The S field for the
example run of the thermocline model presented here
has been plotted in Fig. 4e, making use of the above
formula. It should be compared with the Ekman
pumping field (Fig. 3a). A moderate heat flux of ~20
W m™2 acting on a mixed layer ~ 100 m thick, at
whose base the stratification is 3 kg m ™ km ™, can drive

a substantial flux of ~40 m yr~ ..

S~ 8, ~ + O(Ro), (33)

6. Discussion

We have applied the formalism of generalized po-
tential vorticity flux vectors to quantify and map the
creation and transport of potential vorticity through
an ocean gyre. It should be contrasted with the La-
grangian point of view emphasized by Rhines (1986)
or, in the ventilation context, Woods (1985). The flux
formalism leads to a very general but simple statement
relating the subduction rate at any instant to the buoy-
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FI1G. 8. A schematic diagram showing PV flux lines on an isopycnal
surface. Closed flux lines [ 1] recirculate through the western boundary
current. Open flux lines [2] and [3] emanate from the sea surface
and can either attach themselves onto the coast [2] or return to the
ocean surface [3]. Flux line [4] emanates from the coast and ter-
minates from the sea surface.

ancy forcing of the mixed layer and the jump in po-
tential vorticity across its base. The perspective pro-
vided by J vectors emphasizes the role of the buoyancy,
as opposed to mechanical forcing of the mixed layer
in controlling subduction and setting the potential
vorticity of the thermocline. Indeed, it can readily be
seen that a wind blowing over a vertically homogeneous
mixed layer can generate only potential vorticity there
associated with the very weak horizontal gradients of
density; Q™* < Q™. The PV of fluid as it crosses the
base of the mixed layer into the thermocline is set im-
pulsively by the sharp change in buoyancy forcing. The
simplification provided by the use of generalized PV
flux vectors, J, however, is that J is continuous at the
base of the mixed layer, merely changing from a dia-
batic nonadvective flux to an adiabatic, advective flux.

Potential vorticity flux lines can either close on
themselves or begin and end at boundaries (either free
surface or solid), as illustrated schematically in Fig. 8.
The closed flux lines [1] in the figure recirculate
through the western boundary current. Open flux lines
[2] and [3] emanate from the sea surface where there
is net buoyancy forcing. But where do they end? On
those isopycnal sheets that abut against a solid bound-
ary (the coast or bottom), flux lines can attach them-
selves onto that boundary [2]; here frictional processes
come into play, and F # 0 in Eq. (1c¢), allowing a flux
of Q into the boundary. Otherwise (and the only pos-
sibility on those isopycnal sheets that do not abut) the
flux lines must terminate [ 3] at the ocean surface where
the mixed layer cools. The structure of the western
boundary current is of crucial importance in deciding
how these open flux lines end. Flux lines can also em-
anate from western boundary currents [4].

In the idealized thermocline model used here to il-
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lustrate our ideas, the western boundary current is not
represented. In more complete ocean models, inertial
and frictional effects must come into play. The method
could be straightforwardly and naturally applied to
isopycnal models (for example, Bleck et al. 1989) that
include dissipative and inertial dynamics in the western
boundary layer, as well as more sophisticated mixed-
layer physics. It would be fascinating to diagnose such
a model using J vectors and flux lines.

Finally, we mention a possible meteorological ap-
plication of these ideas. The change in stratification
between the troposphere and lower stratosphere defines
the tropopause. The flux of mass and tracers across this
surface must be set by vertical gradients in heating and
the jump in potential vorticity, as given by the expres-
sion for S in the abstract.
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