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ABSTRACT

The flux form of the potential vorticity (PV) equation is employed to derive simple expressions for the boundary
and interior flux of PV in ocean circulation using Bernoulli functions. The formulas are discussed and physically
interpreted and used to map the flux of PV through a model of ocean circulation.

1. Introduction

The entry and exit of potential vorticity into ocean
circulation, and the flux of potential vorticity through
it, can be elegantly and succinctly described in the
framework provided by the flux form of the potential
vorticity equation (see Marshall and Nurser 1992, here-
after MN):

]
(rQ) 1 = · J 5 0, (1)

]t

where J is a generalized flux of potential vorticity Q,

1
Q 5 2 v · =s (2)

r

with

v 5 2V 1 = 3 u (3)

the absolute vorticity, r the density, and s the potential
density.

The conservation law, Eq. (1), which will be dis-
cussed further in section 2, has a number of notable
properties:

R No matter what thermodynamic variable is chosen to
define the potential vorticity (PV) and what equation
of state is assumed, the mass-weighted PV can always
be written as the divergence of a vector and hence a
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flux-form PV equation can always be written for an
appropriately defined J (see section 2);

R the rhs of Eq. (1) is identically zero, even in the pres-
ence of sources of momentum and buoyancy;

R there is a constraint on the J vectors: the flux J cannot
pass through a s surface—s surfaces are impermeable
to potential vorticity (see Haynes and McIntyre 1987;
MN).

In this paper we discuss and illustrate the interesting
perspective on ocean circulation provided by (1) and its
attendant theorems. In particular, we focus on the quan-
tification of the entry of potential vorticity through sur-
face outcrops and its interior path through the ocean
back to the surface or solid boundaries. The results of
MN are generalized to include thermobaric effects ex-
ploiting the Bernoulli framework introduced by Schär
(1993) and Bretherton and Schär (1993). We derive in-
tegral relationships that express the net flux of PV
through the sea surface within closed Bernoulli contours
or integrated between s surfaces across the ocean from
one coast to the other.

In section 2 we present the relevant theory setting
out the diagnostic framework. In section 3 we illustrate
the ideas by diagnosis of the PV fluxes in a numerical
model of the North Atlantic. In section 4 we discuss
the perspective on ocean circulation provided by the
flux form of the potential vorticity equation.

2. Background theory

a. The PV flux and the flux form of the PV equation

The flux form of the PV equation has been explored
in Haynes and McIntyre (1987), MN, Rhines (1993),
Schär (1993), and Bretherton and Schär (1993). It was
first discussed in the context of ocean circulation by
MN, but in that theoretical development no account was
taken of thermobaric effects nor was use made of the
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Bernoulli framework introduced by Schär (1993) and
Bretherton and Schär (1993). Here we consider an ocean
with an arbitrary equation of state (but retain the Bous-
sinesq approximation) and take on board the develop-
ments introduced by Schär (1993) and Bretherton and
Schär (1993). The salient issues and concepts that attend
the flux form of the PV equation are rather subtle, so
here we highlight key steps in the derivation of diag-
nostic relations for a stratified ocean based on it. To
further clarify issues we have also included, in an ap-
pendix, a parallel discussion for the simpler and more
familiar problem of Stommel’s ocean gyre (Stommel
1948). There, in a homogeneous ocean, J vectors begin
and end on solid boundaries, but in a stratified ocean,
J vectors can thread down from the sea surface through
outcrop windows.

Following Bretherton and Schär (1993) we can write,
making use of the definition of PV, (2), and noting that
= · v 5 0:

] ] ]
(rQ) 5 (2v · =s) 5 2 = · (vs) 5 2= · j, (4)

]t ]t ]t

where the vector j is1

]
j 5 (vs).

]t

As noted by Haynes and McIntyre (1987), and Breth-
erton and Schär (1993), the above is true for any scalar
field s and nondivergent vector v. A mathematical iden-
tity, (4) shows that one can always write a conservation
law for PV in flux form, because rQ can always be
written as the divergence of a vector. Thus, as yet, Eq.
(4) is devoid of any physical meaning. Moreover, if one
adds any nondivergent vector to j, Eq. (4) will always
be satisfied. For j to have any physical meaning we
must choose an appropriate ‘‘gauge.’’

Expanding the partial derivative in j, one can write

]s ]v
j 5 v 1 s .

]t ]t

Now, using (3) and the vector identity = 3 (aA) 5 a=
3 A 1 =a 3 A, where a is a scalar and A a vector,
one can write

]s ]u ]u
j 5 v 1 3 =s 1 = 3 s .1 2]t ]t ]t

The third term is nondivergent and hence does not con-
tribute to (4). Our problem, now, is to determine a non-
divergent gauge X such that the flux J,

]s ]u
J 5 v 1 3 =s 1 X, (5)

]t ]t

1 A lower case j is used here because the ‘‘gauge’’ has not yet been
determined.

has physical significance.2 The gauge X is chosen so
that (5) is consistent with an alternative expression for
J obtained (as a prelude to forming the potential vor-
ticity equation) by crossing the momentum equation by
=s as follows.

The Boussinesq momentum equation is given by

2]u |u| p r9
5 2v 3 u 2 = 1 2 =F 1 F, (6)1 2]t 2 r ro o

where p is the deviation of the pressure from that of a
resting, hydrostatically balanced ocean, F is the geo-
potential, and F is the (nonconservative) frictional force
per unit mass. Following Schär (1993) we write

r9 r9 F
=F 5 = F 2 =r91 2r r ro o o

and take the cross product of Eq. (6) with =s to obtain

]u
3 =s 5 2(v 3 u) 3 =s 2 =p 3 =s

]t

F
1 =r9 3 =s 1 F 3 =s, (7)

ro

where
2|u|

p 5 M 1 (8)
2

is a Bernoulli function and

p r9
M 5 1 F (9)

r ro o

is the Montgomery potential.
Noting that =s 3 (v 3 u) 5 v(=s · u) 2 u(=s · v),

Eq. (7) may be rearranged and written thus:

]s ]u
J 5 v 1 1 =p 3 =s, (10)1 2]t ]t

where

Ds F
J 5 rQu 1 v 1 F 3 =s 1 =r9 3 =s (11)

Dt ro

is the PV flux written down in MN [Eqs. (1b) and (1c)],
but modified by the nonadvective term F=r9 3 =s21ro

due to variations in in situ density along s surfaces
caused by thermobaric effects. The latter term is zero
if s 5 s(r9)—for example, if, as in MN, we ignore the
pressure dependence of r9. However, in the general case
=r9 3 =s ± 0. Note that now Lagrangian conservation
of PV no longer pertains even in adiabatic, frictionless
flow—see McDougall (1988)—but a flux form of the
PV equation can always be written.

2 X 5 0 is not a satisfying choice because it would imply, as noted
by Bretherton and Schär (1993), that J 5 0 in the steady state.
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FIG. 1. Schematic diagram showing contours of Bernoulli function
p and potential density s at the sea surface. Typically, outcrops
(contours defined by s cutting the sea surface) do not close on them-
selves, but p surfaces often do.

Equation (10) is the same as (5), provided we choose
the gauge to be

X 5 =p 3 =s. (12)

Equations (10) and (11) are alternative and equivalent
definitions of the J vector—on equating them we obtain
(7), a component of the momentum equation. MN’s dis-
cussion was based on (11). But (10) also has great utility,
and is the central focus of the present study, because it

1) reveals the ‘‘impermeability theorem’’ in a trans-
parent way—the first term on the lhs, when projected
in the direction normal to the s surface, is equal to
ysrQ, where ys 5 2|=s|21]s/]t is the velocity of
the s surface normal to itself. The remaining terms
represent a flux that is always parallel to the s sur-
face.

2) shows that J can be diagnosed without explicit ref-
erence to frictional (F) and buoyancy (Ds/Dt) sourc-
es, if ]s/]t and ]u/]t are known.

3) shows that in the steady state p is the streamfunction
for the J vector on s surfaces, even in the presence
of frictional and buoyancy sources, a very general
result first noted by Schär (1993) and Bretherton and
Schär (1993) and labeled as the ‘‘generalized Ber-
noulli theorem.’’

b. The PV flux through the sea surface

A quantification of the entry of PV into ocean cir-
culation through the surface outcrops is of great interest
because it must match the advective flux away from the
sea surface in the stratified interior. Here, we rederive
a result of MN [their Eq. (16)] but start from Eq. (10)
rather than, as in MN, (11). From (10), we write the
upward PV flux at the sea surface Jz as

]s ]u
J 5 v 1 k · 1 =p 3 =s, (13)z z 1 2]t ]t

where k and vz are, respectively, the unit vector and
the component of the absolute vorticity in the vertical
direction. By using the vector identity A · (B 3 C) 5
(A 3 B) · C and noting that k 3 =F 5 0, we have

2]s ]u |u| p
J 5 v 1 k 3 1 = 1 · =s. (14)z z 1 2[ ]]t ]t 2 ro

Clearly to lowest order in the Rossby number, Eq. (14)
yields the formula [Eq. (16)] of MN:

]s
J 5 f 1 u · =s , (15)z g1 2]t

where f is the Coriolis parameter and

1
u 5 k 3 =pg r fo

is the geostrophic velocity. Marshall and Nurser arrived

at (15) starting from (11), but the derivation here, be-
ginning from (10), is much more direct and general and
clearly shows that Jz can be diagnosed without direct
reference to buoyancy or mechanical forcing.

In the steady state—we consider time dependence in
section 2d—Eq. (13) can be written

](p, s)
J 5 = · [k 3 (=p)s] 5 , (16)z ](x, y)

where ](p, s)/](x, y) is the Jacobian of p and s eval-
uated at the sea surface. In the steady state Eq. (16) tells
us that

R Jz vanishes locally whenever p and s are aligned
R by Gauss theorem, the integral of Jz vanishes over a

region of the sea surface bounded by contours of con-
stant p or s. Typically, as sketched in Fig. 1, outcrops
(contours defined by s cutting the sea surface) do not
close on themselves, but p surfaces often do.

R Jz . 0 (i.e., the PV flux is directed out of the ocean)
in regions where ug · =s . 0 (and vice versa)—in the
Northern Hemisphere—we sketch the state of affairs
in Fig. 1.

1) INTEGRAL STATEMENTS

Let us define Ĵz as the total PV flux through the sea
surface between the outcrops s1 → s integrated across
the ocean from one coast to the other (see Fig. 2a):

s

Ĵ (s) 5 J dA,z E z

s1

where dA is a surface area element.
The PV flux in the infinitesimal range s to s 1 ds

is (]Ĵz/]s) ds and can be written
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s]
21J dA 5 J |=s | dsE z E z[ ]]s

s C1

]p
5 ds 5 Dp, (17)E ]sC

where C is the outcrop and we have used Eq. (16) and
the Leibnitz theorem (Marshall et al. 1999, p. 552). Thus
a relation of diagnostic value results:

The net PV flux through the sea surface between the
outcrops s and s 1 ds can be diagnosed from the

difference between the Bernoulli function at the
two ends of the outcrop. If p rises (falls) along an
outcrop moving along it from west to east, then the
net PV flux is out of (into) the ocean in the interval
s to s 1 ds.

2) TIME DEPENDENCE

In the time-dependent case we must retain time de-
rivatives. Using the Leibnitz theorem and Eq. (13) we
have

s] ]s ]u
21 21 21 21J dA 5 J |=s | ds 5 v |=s | ds 1 k · 3 =s |=s | ds 1 k · (=p 3 =s)|=s | ds.E z E z E z E E1 2[ ]]s ]t ]t

s C C C C1

To lowest order in Rossby number, and making use of
(17), the above reduces to

s]
J dA 5 2 f y ds 1 Dp, (18)E z E s[ ]]s

s C1

where

]s
21y 5 2|=s |s ]t

is the velocity of the outcrop in the direction normal to
itself, vz has been replaced with f, and Dp is the drop
in the value of the Bernoulli function from one end of
the outcrop to the other.

The movement of the outcrops, ys, can be interpreted
as the result of a PV flux. As pointed out by Csanady
and Vital (1996), this flux of PV is used to create/erode
the seasonal thermocline as the outcrop moves south in
winter and returns to the north in the summer, as
sketched schematically in Fig. 2b. In section 3b we carry
out the surface integral (18) over outcrop windows in
a numerical simulation, following their seasonal migra-
tion.

c. Interior PV fluxes

1) PV FLUXES IN THE STRATIFIED INTERIOR

Beneath the seasonal thermocline we assume that the
flow is steady, in which case Eq. (10) reduces to

J 5 =p 3 =s 5 = 3 (p=s) 5 2= 3 (s=p). (19)

Thus J is perpendicular to =s (recall that the J vectors
lie in s surfaces) but also perpendicular to =p. In fact,
as sketched schematically in Fig. 3, Eq. (19) tells us
that the Bernoulli function p is the streamfunction for
the PV flux between s and s 1 ds because it may be
written

|=s|21J 5 ks 3 =p, (20)

where ks 5 2=s/|=s| is a unit vector normal to s
surfaces and the horizontal gradient is operating on s
surfaces. Making use of the Montgomery potential, Eq.
(9), we may write the above:

2|u|
s21|=s | J 5 k 3 =M 1 = , (21)s1 2[ ]2

where all velocities are evaluated on s surfaces. To
lowest order in Rossby number, the last term in (21)
can be neglected and the flux of PV in the thermocline
between s and s 1 ds written as

F
s sthermoclineJ 5 k 3 =M 5 f u 1 k 3 = r9, (22)g sro

where ug is the geostrophic velocity and f the Coriolis
parameter.

Note that the J vector in the thermocline includes a
nonadvective component due to variations in in situ den-
sity along s surfaces caused by thermobaric effects. As
we shall see in section 3, this term is not always neg-
ligible and was ignored in MN.

2) SUBDUCTION RATE

Let us now consider the flux of PV down from the
surface into the interior of the ocean (see Fig. 3). In the
steady state the flux of PV between two p surfaces and
between two s surfaces is invariant because of the pro-
hibition of any PV flux across density surfaces by the
impermeability theorem. In the presence of a seasonal
cycle, however, the flux lines will lengthen and contract
as the outcrops migrate north and south (see Fig. 2b).
But integrating over the seasonal cycle, so that the stor-
age of PV in the seasonal thermocline sums to zero, we
may equate the net flux across the surface to the flux
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FIG. 2. (a) Schematic plan view of the outcrop window s → s 1
ds, and the reference outcrop s1; (b) vertical section showing the
same isopycnal layer.

FIG. 3. The Bernoulli function p is the streamfunction for the PV
flux between s and s 1 ds, and is plotted schematically here showing
subduction into the subtropical gyre.

into the main thermocline (assuming the main ther-
mocline is in steady state):

[J · ndA]thermocline 5 [JzdA]surface,

where the rhs is evaluated at the sea surface (following
outcrop windows), and the lhs is evaluated at a con-
venient level on the s surface below the surface in the
main thermocline (n is the unit vector normal to the top
of the main thermocline and directed downward). Note
how the impermeability theorem allows one to equate
the flux at some distance beneath to the flux through
(at) the sea surface, without reference to the (very com-
plicated) details of the boundary-layer processes be-
tween (represented schematically in Fig. 3, by the shad-
ed region).

If thermobaric contributions to Jthermocline can be ne-
glected in Eq. (22), the volume of fluid entering the
thermocline from the lower end of the tube directly
yields the subduction rate:

surface[J dA]zS5 2 , (23)
thermocline[rQdA]

where Jz is given by Eq. (15) integrated over the seasonal
cycle. Equation (23) was written down in MN, but the
derivation presented here clarifies the assumptions im-
plicit in it and the role of the seasonal cycle.

3) PV FLUX ON A SOLID BOUNDARY

We have seen that the PV flux lines are, in fact, p
contours on s surfaces. They can close on themselves,
enter and/or exit from the sea surface, but also enter
and/or exit at solid boundaries (see Fig. 8 in MN). In
the steady state the flux into or out of a solid boundary
can be diagnosed from the variation in the Bernoulli
function along the boundary [see Eq. (20)] in the s
surface that abuts it. For a detailed discussion see Csan-
ady and Pelegri (1995) and the appendix of the present
paper, in which frictional processes at the western
boundary are discussed in the framework of the Stom-
mel (1948) model.

3. Diagnosis of PV fluxes in a model of ocean
circulation

To illustrate, in a less abstract way, the ideas set out
in the previous section, we have diagnosed the entry,
interior flux, and exit of potential vorticity into a nu-
merical analogue of ocean circulation, using fields ob-
tained from the North Atlantic sector of a global nu-
merical model of ocean circulation. The model algo-
rithm is described in Marshall et al. (1997a,b). The par-
ticular integration used here, extending from 808S to
808N at 18 horizontal resolution, has 20 layers in the
vertical, ranging from thicknesses of 25 m at the surface
to 500 m at the deepest level. Given the coarse hori-
zontal resolution of the model baroclinic eddy transfers
were parameterized. A convective adjustment scheme
was used to parameterize convection. Full spherical ge-
ometry and realistic topography was employed. Density
was computed using a polynomial approximation of the
full equation of state. The model was initialized with
the ‘‘Levitus’’ dataset and driven by 12-hourly winds
and fluxes (obtained from NCEP) during the period Jan-
uary 1983 until January 1996.

The resulting circulation is plausible and exhibits
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many realistic features and much variability both on
daily, seasonal, and interannual timescales. Fields (3D
velocity, pressure, temperature and salinity, air–sea flux-
es) were averaged monthly and diagnostics carried out
on these monthly averaged fields for the year 1992 of
the simulation. The particular integration diagnosed here
is discussed in more detail in Marshall et al. (1999)
where the subduction and water mass transformation
processes occurring in the model were diagnosed and
compared with theory and models.

Before going on it is worth emphasizing that the
details of the parameterization employed in the nu-
merical model do not concern us here, inasmuch as
our diagnostic relations do not make explicit reference
to them. Also, we consider a PV variable with a po-
tential density referenced to the surface. Hence, our
diagnostics will be limited to the upper layers of the
ocean where thermobaric effects are relatively small.
Finally, the Rossby number is sufficiently small at the
coarse resolution being mapped here, that p → M to
a very good approximation [see Eqs. (8) and (9)]. In
what follows p is identified with M unless noted oth-
erwise.

a. Flux of PV through a model ocean

1) PV FLUX THROUGH THE SEA SURFACE

The annual average of Jz is evaluated from Eq. (15)
summing monthly mean geostrophic velocities (calcu-
lated directly from the surface pressure field of the mod-
el) and potential densities. The annual average of the
surface pressure is shown in Fig. 4a and reveals the
broad sweep of the subtropical and subpolar gyres. The
potential density referenced to the surface is computed
from the monthly temperature and salinity using the full
equation of state employed in the model. The annual
average shows a broad range of s values, from 20 at
the equator off Africa to 27.4 in the Norwegian Sea
(Fig. 4b). The field of Jz (Fig. 4c) shows coherent large-
scale patterns; its sign depends on the orientation of ug

relative to =s. In the subtropical gyre, Jz is, in the main,
negative and the PV flux is downward (into the ocean).
Along the western boundary and at high latitudes, how-
ever, the PV flux is positive. In addition to this general
pattern, we note regions of upward PV flux near the
equator and over an area centered at 308N extending
from 408 to 208W. Note, however, that the Jz field as
estimated from Eq. (15) is not very meaningful near the
equator where geostrophic velocities are not defined.
Equation (14) should be used there. In the Labrador Sea
and near the northern boundary of the domain, the PV
flux is into the ocean.

2) INTERIOR FLUX—PV FLUX LINES

Equation (20) tells us that p is the streamfunction
for the J vectors on s surfaces. We plot p on isopycnal

surfaces and relate the resulting interior flux lines to
the PV flux at the surface Jz . In the interior and to
lowest order in Rossby number, J is made up of the
advective component and the nonadvective thermo-
baric component [see Eq. (22)]. Figures 5a and 6a show
the isolines of p on isopycnals, along with the sign of
Jz at the sea surface north of the outcrop (see legend).
Note that the sign of Jz is in accord with the sense of
the PV flux lines on the isopycnal surface: when the
PV flux is downward (upward), the PV flux lines are
directed away from (toward) the base of the mixed
layer. This is to be expected theoretically from the
impermeability theorem, and it is pleasing that this is
seen diagnostically.

On the 25.4 s surface (Fig. 5a), the PV flux at the
surface is downward just north of the outcrop except in
a narrow band near the western boundary where it is
directed strongly outward. Over most of the gyre, the
25.4 surface is almost entirely ventilated: PV flows
down from the mixed layer and then flows back into
the mixed layer at the western boundary. The thermo-
baric contribution to the PV transport is essentially neg-
ligible on this surface (Fig. 5d) and PV is carried into
the interior by geostrophic currents.

Farther north, on the 26.6 surface (Fig. 6a), PV flows
down from the mixed layer between 408 and 208W near
408N and is carried away into the interior. Note that
some flux lines close on themselves on this isopycnal
surface and that others also emanate from the coast in
the region of the western boundary current. At these
depths, the nonadvective thermobaric flux is no longer
negligible (compare Fig. 6d with Fig. 6c) and shows
that the Bernoulli function is not a streamfunction for
the geostrophic flow on isopycnals. This has been
pointed out, for example, by McDougall (1989) and
Zhang and Hogg (1992), but is seen here through the
J-vector framework. It should be remembered, how-
ever, that the Bernoulli function is always an exact
streamfunction for the total PV flux in the steady state.

3) SUBDUCTION RATES FROM J VECTORS

The annual subduction rate is computed from Eq.
(23), making use of the Jz plotted in Fig. 4c. We compute
S across the surface defined by the depth, H, of the
potential vorticity maximum Qmax in March 1992 plotted
in Fig. 7a. This ensures that the computation is stable
and robust and avoids dividing by a vanishingly small,
ill-defined stratification at the base of the mixed layer.
The resulting H is generally slightly deeper than the
mixed layer depth diagnosed by standard procedures and
is perhaps best thought of as representing the top of the
main thermocline. Nevertheless, it shows the same
broad structure with a familiar tongue of somewhat
deeper—200 m thick—layers extending southwestward
across the basin; H is particularly deep in the Labrador
Sea where it exceeds 2 km. In fact, the winter of 1991/
92 was characterized by huge buoyancy losses over the



MARCH 2001 783M A R S H A L L E T A L .

FIG. 4. (a) Annual-mean surface pressure field (contour interval:
10 cm) mapping out the subtropical gyres of the North Atlantic (taken
from year 1992 of the model simulation); (b) annual-mean potential
density referenced to the surface (contour interval: 0.2 kg m23) for
the year 1992 (estimated from the monthly averaged potential tem-
perature and salinity fields of model year 1992); (c) Jz 5 f ug · =s
(scaled by 10212 kg m23 s22 contour interval: 0.5 between 25 and
15, isoline 110 also shown) where the bar denotes an annual average.
The surface geostrophic velocity is diagnosed from the monthly av-
eraged surface pressure fields of 1992. A 3-point boxcar window
smoother has been applied along each axis.

Labrador Sea and deep water was found at a depth of
2500 m.

The resulting subduction rate, along with an estimate
made using the kinematic definition—the method is de-
scribed in Marshall et al. (1993)—are shown in Figs.7b

and 7c, respectively. The agreement between the two
estimates is encouraging: there is a broad area of sub-
duction over the subtropical gyre with a narrow zone
of values between 100 and 250 m yr21 extending from
308N, 708W to 508N, 208W. Another area of smaller
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FIG. 5. The Bernoulli function, p, and the PV flux J on isopycnal surface 25.4 for March 1992: (a) p (contour interval: 0.4 m2 s22) and
Jz. The dotted line denotes the outcrop. The thin solid lines show the p isolines south of the outcrop, and the thick solid lines show the
zero Jz contour north of the outcrop. Regions where Jz is negative have been shaded in gray. (b) The PV flux J at lowest order in Rossby
number as given by Eq. (22). The scaling is given by an arrow of magnitude 5 3 1026 m s22 (corresponding to a speed of 5 cm s21 if f 5
1024 s21). (c) Advective component f ug (d) nonadvective thermobaric component ks 3 F=sr9. Note that to allow visualization of the21ro

vectors the land has not been shaded in (b), (c), and (d) and vectors greater than 5 2 3 1026 m s22 have not been plotted.Ï
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FIG. 6. Same as Fig. 5 but on isopycnal surface 26.6.
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FIG. 7. (a) Depth H (contour interval: 50 m between 100 and 200
m, 200 m beyond) of the PV maximum Qmax in March 1992, where
Q is the planetary PV Q 5 2ro

21 f ]s/ f ]z. (b) Annual subduction
rate S (contour interval: 50 m yr21 between 2500 and 1500 m yr21,
isolines 21000 and 11000 m yr21 also shown) calculated from Eq.
(23) with Jz given by Fig. 4c. (c) Annual subduction rate Skin (same
contour interval as above) estimated from kinematic definition: Skin

5 2wH 2 vh · =H , where wH and vh are the annual-averaged vertical
and horizontal velocities at depth H, respectively. In these plots a
3-point boxcar window smoother has been applied along each axis.

values (50–100 m yr21) is found across the basin be-
tween roughly 108 and 208N. In the vicinity of the equa-
tor, along the western boundary, and at high latitudes,
the two estimates show generally large entrainment
rates.

b. Integral fluxes

We now diagnose the quantities ]Ĵz(s)/]s and #C dp
described in section 2b(2) [see Eq. (17)]. The former is
evaluated by adding the contributions (Fig. 4c) JzdA for
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FIG. 8. Annual average of ]Ĵz(s)/]s as a function of s (solid line) and annual average of #C dp
as a function of s (dotted line).

grid points whose densities lie between s 2 ds/2 and
s 1 ds/2, where the density bin, ds, is set to 0.4. This
is done over outcrop windows each month, following
their seasonal migration, and then summing to form the
annual average. The annual average over 1992 is shown
in Fig. 8; ]Ĵz(s)/]s is positive for all density ranges
with a maximum of 4.5 m2 s22 at s 5 26.4. We see
that, even though there is a widespread area of negative
Jz in the subtropical gyre (see Fig. 4c), the intense pos-
itive fluxes localized on the western boundary dominate
the integral. As a check on our calculation we evaluate
the rhs of (17) by summing dp along the faces sepa-
rating grid cells with densities greater than s from grid
cells with densities lees than s. The annual average
displays essentially the same structure as ]Ĵz(s)/]s. For
the most part, the residuals are less than 0.5 m2 s22 and
are due to numerical differences in the way the two
quantities are evaluated.

We see, then, that the annually averaged flux of PV,
integrated over each density class, is directed from the
ocean to the atmosphere. This might be expected since
the net flux depends only on the difference in the Ber-
noulli function at the two ends of the outcrop [see Eq.
(17)] and hence, to a good approximation, to the dif-
ference in pressure at the sea surface at the coasts (the
term r9gz remaining constant along the outcrop). Out-
crops attach to the boundary on the west where, due to
the southeast to northwest tilt of the outcrops, it is denser
(colder) there. Hence the pressure at the sea surface is
typically lower in the west than in the east: peast . pwest

implying that Ĵz(s) is positive. This is achieved by a

flux of PV from the western boundary [as in (4) of the
schematic diagram of MN, Fig. 8], revealing a fasci-
nating connection between mechanical and thermody-
namic processes exposed by the J-vector framework.

4. Discussion

We have extended the PV theory presented in MN—
through the lens of the generalized Bernoulli theorem
derived by Schär (1993) in the atmospheric context—
and have derived and interpreted very general, yet very
simple, expressions that quantify the flux of PV across
the sea surface and its transport through and exit from
the ocean. Illustration of these expressions through di-
agnosis of a general circulation model has allowed us
to look at PV flux patterns in a more realistic context
than the idealized examples of MN.

Ocean ventilation and recirculation can be understood
from a PV flux budget perspective. PV flows into (out
of ) the ocean wherever, following the geostrophic flow,
potential density at the sea surface increases (decreases).
In the subtropical gyre, PV flows down from the surface
into the interior, circulates on isopycnal surfaces, and
exits at the sea surface on the western margin of the
gyre. Figures 5a and 6a have several features in common
with the isopycnal maps of planetary PV calculated from
gridded hydrographic data by McDowell et al. (1982).
If the thermocline is steady, adiabatic, and inviscid, the
PV contours and the streamlines coincide on an iso-
pycnal surface. Thus Figs. 5a and 6a ought to delineate
the gross features of the PV distribution away from the
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boundaries. The use of low-resolution data and plane-
tary PV cause the PV contours of McDowell et al. to
approach the boundary in a zonal manner. In our com-
putation, however, many of the J-vector flux tubes (or
the Bernoulli contours) are deflected toward the north-
east before they hit the coast. Our maps suggest that
many of the PV contours on shallow s surfaces wrap
themselves around the central subtropical gyre and re-
turn to the outcrop to the west.

Integrated across the outcrop, we have derived a sim-
ple diagnostic relation between the net flux of PV and
the difference in Bernoulli function from one end of the
outcrop to the other. There is a net flux of PV out of
isopycnal layers, across the sea surface, if peast . pwest.
In the model studied here, and we suspect in the real
Atlantic Ocean too, when integrated over an outcrop
window we always find a net PV flux out of the ocean
because the pressure at the sea surface is always higher
at the eastern margin of an outcrop than at its western
margin. This excess flux must emanate from the western
boundary layer [flux line (4) in MN’s Fig. 8]. There is
a basin-integrated near-surface geostrophic mass trans-
port directed poleward, up the density gradient. As Eq.
(15) shows, the Ekman transport does not enter into the
diagnosis of the surface PV flux. Calculations of the
diapycnal volume flux (made on the same model output:
Marshall et al. 1999, their Fig. 7) shows that the basin-
integrated flow in the upper layer is indeed directed
poleward except at the very lowest densities (s , 23).

From the impermeability theorem, the (nonadvective)
flux of PV through the sea surface must be associated
with an advective (subducted) flux between the upper
ocean and the main thermocline, provided thermobaric
effects are negligible. Patterns of subduction rates using
the PV flux framework are very similar to those com-
puted directly.

It is perhaps surprising that expressions of such gen-
erality are at the same time so succinct, that they do not
make explicit reference to PV frictional and buoyancy
forcing terms, and that they are rather readily and ro-
bustly computed from models (or observations). The
simplicity is, however, perhaps illusory [see the cau-
tionary note in Rhines (1993)]; the flux form of the
potential vorticity equation distracts us away from many
important details. For example, although Eq. (13) is
completely general and can be computed from knowl-
edge of p and s alone, the patterns of p and s owe
their existence to PV forcing terms. Nevertheless, J vec-
tors provide an interesting and elegant perspective on
the fluid mechanics of ocean circulation.
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APPENDIX

The Flux Form of the PV Equation for the
Stommel’s Gyre

In the archetypal study of Stommel (1948) of a wind-
driven gyre in a homogeneous ocean, the PV variable
is simply the vertical component of the absolute vor-
ticity q 5 k · v, where k is the unit vertical vector and
v the absolute vorticity given by (3). From the definition
(3) we may write

]q
1 = · j 5 0, (A1)

]t

where

]u
j 5 k 3

]t

is defined up to a nondivergent vector. But from the
momentum equation:

]u
1 (k 3 u)q 1 =p 5 F, (A2)

]t

where p is the Bernoulli function, we may write

]u
k 3 2 uq 1 k 3 =p 5 k 3 F, (A3)

]t

which can be expressed as

]u
J 5 k 3 1 =p , (A4)1 2]t

where

J 5 qu 1 k 3 F. (A5)

Equation (A3) is the analog of (7), Eq. (A4) the analog
of (10), and (A5) the analog of (11).

We note in passing that the momentum equation, writ-
ten in terms of J, takes the compact form

]u
1 k 3 J 5 2=p, (A6)

]t

which looks very similar to the isentropic coordinate
version of the momentum equation of a stratified fluid
[see Eq. (26) of Schär (1993)].

The analysis presented in this study is based on Eq.
(A4) and it enables us to plot J, in the steady state at
least, from knowledge of the Bernoulli function, p,
alone. Figure A1 plots J for the Stommel gyre from the
Bernoulli function, which in Stommel’s case reduces to
the surface pressure field. It displays J directed outward
from the western boundary (where frictional contribu-
tions to F are important), southward, and then back in
to the boundary to the south. Hence the interest in Eq.
(A4), which does not make explicit reference to F (and
buoyancy forcing in the more general case). In this paper
the above framework has been generalized to capture
exit and entry of PV in a stratified ocean not just from
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FIG. A1. Surface height contours (cm) for the Stommel subtropical
gyre [after Fig. 6 of Stommel (1948)]. The arrows show the sense of
the J vectors.

the solid boundaries but also from the sea surface via
the outcrops.
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