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Abstract

Ž .A solution strategy for the incompressible Navier Stokes equations INS is outlined, which renders ocean models based
on them competitive with those that assume hydrostatic balance on all scales. It is shown that non-hydrostatic models rooted
in INS can be designed which, when deployed in the hydrostatic limit, require no more computational effort than models

Ž .based on the hydrostatic primitive equations HPE . But unlike HPE, the model can also be used to address convective,
non-hydrostatic scales if its resolution is increased. The ideas are illustrated in simulations of convection, baroclinic
instability and large-scale circulation in the Mediterranean. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we consider some algorithmic as-
pects of ocean models rooted in the incompressible

Ž .Navier Stokes equations hereafter INS . Such mod-
els do not a priori make the hydrostatic approxima-
tion and so permit study of small-scale convective
processes, as well as large-scale motions. Conven-
tional ocean models employ approximated forms of
the Navier Stokes equations, using numerical
schemes based on the ‘hydrostatic primitive equa-

Ž .tions’ or HPEs , in which the vertical momentum
equation is reduced to a statement of hydrostatic
balance and the ‘traditional approximation’ is made,
in which the Coriolis force is treated approximately

) Corresponding author.

and the shallow atmosphere approximation is made.
On a large-scale, the HPEs omit terms that are
generally thought to be small, but on small scales,
such as those associated with the convective scale,
the scaling assumptions implicit in them become
increasingly problematic. Indeed, to model convec-
tive dynamics in the ocean, one must use models
based on INS.

It is a widely held belief that models based on
INS are not suited to studying and simulating large-
scale processes because of the computational over-
head inherent in INS algorithms. In this paper, how-
ever, we describe a solution method for INS which,
because it is sensitive to the transition from non-hy-
drostatic to hydrostatic dynamics, can also perform
competitively with hydrostatic models in the hydro-
static limit. First, in Section 2, we discuss the hydro-
static approximation and its breakdown, identifying
the relevant non-dimensional numbers. Insight gained
from this analysis informs our numerical strategy, in
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which the pressure field is separated into surface,
hydrostatic and non-hydrostatic parts. In Section 3,
the approach is illustrated in numerical studies of the

Ž .interplay between convective unbalanced and baro-
Ž .clinically unstable balanced motions. In Section 4,

the method is applied to model the general circula-
tion of the entire Mediterranean basin, showing that
there is no overhead in using INS rather than a more
traditional HPE model. Complete details of the nu-
merical methods and physical rationale behind the
modeling strategy can be found in Marshall et al.
Ž .1997a,b . Programming issues are discussed in Shaw

Ž .et al. 1998 , which compares data parallel to implic-
itly parallel programming paradigms.

2. Models of hydrostatic and non-hydrostatic dy-
namics

Consider the schematic diagrams sketched in Fig.
1 showing the convective deepening of a mixed layer
in the ocean. In Fig. 1a, an initially resting stratified
fluid is subject to widespread and uniform buoyancy
loss from the surface; the layer deepens by drawing
buoyancy from depth through convection that ex-
changes parcels of fluid in the vertical. Such convec-
tion, occurring on scales of perhaps 1 km or less in
the ocean, is fundamentally non-hydrostatic. Suppose
now, however, as in Fig. 1b, that spatial inhomo-

Žgeneities in buoyancy forcing or ambient stratifica-
.tion induce lateral gradients in mixed-layer depth

and density. Now the mode of buoyancy transfer
through the mixed layer can change from a non-hy-
drostatic convective one, to a hydrostatically bal-
anced motion in which fluid parcels are exchanged
laterally on slanting paths in baroclinic instability.
The baroclinic instability scale is a few kilometers in
the oceanic mixed layer. This switch, from predomi-
nantly non-hydrostatic to hydrostatic motion, will be
illustrated by numerical experiment in Section 3.

Models that assume hydrostatic balance a priori
cannot, for example, be used to study the interplay
between convection and baroclinic instability de-
picted in Fig. 1. Let us now inquire into the range of
applicability of hydrostatic models by identifying the
scale on which the hydrostatic approximation breaks
down, and how it depends on external parameters.

Ž .Fig. 1. a A schematic diagram showing convection triggered by
buoyancy loss at the surface of an initially resting stratified fluid.
We imagine that the buoyancy loss is constant in time and
spatially uniform. Upright convection develops in response, draw-

Ž .ing buoyancy from depth to balance loss from the surface. b
Now, if large-scale lateral density gradients are induced by spatial

Žvariations in the surface buoyancy loss or equally, spatial varia-
2 .tions in the N of the underlying fluid , the mode of buoyancy

Žtransfer through the convective layer can change from a non-hy-
.drostatic convective one to a hydrostatically balanced motion in

which fluid parcels are exchanged on slanting paths in baroclinic
instability.

2.1. The hydrostatic approximation

We discuss the transition from INS to hydrostati-
callyrgeostrophically balanced dynamics by consid-
ering the balance of terms in the governing equa-
tions. In so doing, we will identify the relevant
non-dimensional parameters; in particular, a non-hy-
drostatic parameter n, which is a measure of the
ratio of the magnitude of non-hydrostatic to hydro-
static pressures. This suggests, and leads to, a solu-
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tion strategy for INS which, in the hydrostatic limit,
is as economical as those based on HPE. Unlike
HPE, however, INS asymptotes to the unapproxi-
mated equations as the resolution of the model in-
creases.

Identifying and exploiting the transition from un-
balanced, non-hydrostatic motion to hydrostatic,
geostrophic, dynamics is essential if an efficient
algorithm is to be designed. Accordingly, in Ap-
pendix A, we non-dimensionalize INS and consider
the balance of terms if the flow is close to one of
hydrostatic and geostrophic balance. There are three
important non-dimensional numbers: The Rossby
number, R sUrfL, a measure of rotation effects,o

the Richardson number, R sN 2 h2rU 2, a measurei

of the strength of the stratification and gshrL, a
measure of the aspect ratio of the motion. Quasi-geo-
strophic dynamics occur at large R and small R ,i o

2 Žsuch that R R ,1 that is on the Rossby-radiusi o
.scale Nhrf .

The non-dimensional form of the momentum,
continuity and thermodynamic equations may be

Žwritten in terms of R , R and g thus see Appendix0 i
. 1A

DX vX
h X X X X X XR q = p qp qnqp q f k=v s0Ž .Ž .Xo h s hy nh hDt

1Ž .
DX wX

E pX
nh

q s0 2Ž .X XDt E z

DX bX

X 2 XqN w s0 3Ž .XDt

E wX

X XR q= Pv s0 4Ž .Xo h hE z

Ž .where DrDt is the total derivative, Õs Õ ,w is theh

velocity, b is the buoyancy, f is the Coriolis param-
eter, z is the height, p is the pressure, = is theh

horizontal divergence operator and N 2 is the
Brunt–Vaissala frequency. In the above, primed
variables are non-dimensional and assumed to be of
order unity.

1 Here the Cartesian form of INS is analyzed, in which only
Ž .Coriolis terms depending on 2V sin latitude are retained; the role

Ž .of 2Vcos latitude terms which are neglected in HPE are dis-
Ž .cussed in Marshall et al. 1997a .

Here nsP rP , which compares the typicalnh hy

magnitude of non-hydrostatic to hydrostatic pressure,
is given by

g 2

ns 5Ž .
Ri

Ž .Note that in Eq. 1 we have separated the pres-
sure into hydrostatic, non-hydrostatic and surface
pressure parts and, furthermore, we have introduced
a tracer parameter q multiplying p : In HPE, qs0;nh

in INS, qs1.
We can now more clearly identify the non-hydro-

static and hydrostatic regimes in this rotating strati-
fied fluid.

Ž . w xi The Non-hydrostatic regime nGR : horizon-o

tal gradients of p are important in the evolution ofnh
Ž .the flow and cannot be neglected in Eq. 1 .

Ž . w xii The Transitional regime nFR : whereo

non-hydrostatic effects no longer dominate and the
flow is under increasing hydrostatic control.

Ž . w xiii The Hydrostatic regime n<R : as as-o

sumed in HPE.
In the rotating, stratified problem g 2 must be

compared with R R , rather than unity:i o

g 2
<R Ri o

for hydrostatic balance. Note that the familiar condi-
tion for hydrostatic balance, gshrL<1, is a very
special case pertaining only when R R ;1. Fori o

example, a fluid in which g;1 can still be hydro-
static if it is either rotating sufficiently rapidly or it is
sufficiently stratified. The above can be expressed
differently by expanding out and collecting terms
thus:

n f 2 U
s <1 for hydrostatic balance 6Ž .2R fLNo

a form which clearly demonstrates that strong strati-
fication and high rotation both inhibit non-hydro-
static effects. In the ocean Nrf ranges between zero
and perhaps 100; the Rossby number from 10 to
below 10y2 . In Table 1, we present nrR as ao

function of Nrf and R ; it should be compared witho

unity. It is clear that non-hydrostatic effects come in
to play in very weakly stratified regions of the ocean
Žsuch as deep convection sites where, after convec-

.tion, Nrf is of order unity and will be largest on
small scales in swift currents where the Rossby
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Table 1
Table showing the magnitude of the non-hydrostatic parameter

Ž 2 2 .Ž .nrR s f rN Ur fL as a function of frN and Ur fLo

nrR frNo

0.01 0.1 1
y6 y4Ur fL 0.01 10 10 0.01
y5 y30.1 10 10 0.1
y41 10 0.01 1
y310 10 0.1 10

number is large. While it is clear that on the large
scale, the hydrostatic approximation is an exceed-

Ž .ingly good one top left of table as one moves
towards the bottom right motions become increas-

Ž .ingly non-hydrostatic nrR large .o

With the increasing power of computers, ocean
models based on the HPEs are increasingly em-
ployed at horizontal resolutions comparable with the
depth of the ocean—indeed the need to adequately

Ž .resolve the geostrophic eddy scale ;10 km de-
mands such high resolutions. In those places where
the water column is weakly stratified, such as deep
water formation sites or mixed-layer regions, the
hydrostatic approximation may not be adequately
satisfied and the appropriateness of the HPEs must
then be brought into question.

Ž .Is it possible, then, to build a model that i does
not, a priori, assume hydrostatic balance so making it
suitable for the study of unbalanced convective scales

Ž .of motion and yet ii can be employed economically
at large, hydrostatically balanced scales? Suppose at
the outset we were to separate the pressure into
hydrostatic and non-hydrostatic components. In the
hydrostatic limit, one would just compute the pres-

Žsure at one particular level in the ocean it is conve-
.nient to choose the surface pressure and then deduce

the pressure hydrostatically at all other levels; in the
non-hydrostatic limit, one must further determine
p . In the hydrostatic limit of INS, qs0 but p isnh nh

not zero. However, only its Õertical Õariation is
Ž .required in Eq. 2 to drive the evolving vertical

velocity. 2 Moreover, if q'0, the vertical velocity
Ž .found from Eq. 2 yields exactly that which would

2 Indeed even in HPE a p is implied, and can be deducednh
Ž .from w t .

have been deduced from the continuity equation had
HPE been used.

More precisely, the non-hydrostatic pressure satis-
fies the following elliptic equation; taking = of Eq.h
Ž . Ž . Ž .1 and ErEz of Eq. 2 using Eq. 4 , we obtain:

E 2 pX qn 1nh X 2 X w xq = p s Source 7Ž .nhh nh2 2 RE z R oo

Žwhich must be solved subject to appropriate Neu-
.mann boundary conditions. These are discussed at

Ž .length in Marshall et al. 1997a . Thus if qs0, the
Ž 2 . Ž 2 .three-dimensional operator ™ E r E z and so

can be solved trivially. Furthermore, if nrR F1o
Ž .then even for full INS in which qs1 the left hand

Ž .side of Eq. 7 will be dominated by the vertical axis
Ž .and an iterative solution of Eq. 7 will converge

Ž .rapidly see for example Hill and Marshall, 1995 .
This, then, suggests our strategy; we separate the

pressure into its hydrostatic and non-hydrostatic
components. In the hydrostatic limit of INS, the
non-hydrostatic pressure required to step w forward

Ž .prognostically can be found directly and rapidly by
solving a second order ODE. As non-hydrostatic
effects become more important, the elliptic operator
becomes more and more isotropic, and the three-di-
mensional inversion requires correspondingly more
computational effort. However, the INS model, un-
like HPE, asymptotes to the continuum as its resolu-
tion is increased.

2.2. Numerical strategy

2.2.1. OÕerÕiew
The approach outlined above has been used by us

to guide the construction of a model rooted in INS
building on ideas developed in the computational
fluids community. The numerical challenge is to
ensure that the evolving velocity field remains non-
divergent. Most procedures, including the one em-
ployed here, are variants on a theme set out by

Ž .Harlow and Welch 1965 , in which a pressure cor-
rection to the velocity field is used to guarantee
non-divergence. The correction step is equivalent to,
and is solved as, a three-dimensional Poisson prob-
lem for the pressure field with Neumann boundary

Ž .conditions 7 . A ‘brute force’, unthinking approach
to the Poisson inversion requires prohibitive amounts
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of computer time, and would render the INS model,
even in its hydrostatic limit, uncompetitive with
HPE. Moreover, the inversion demands ‘global’ con-
nectivity between all points in the computational
domain, presenting a challenge in mapping the model
to a parallel computer because such connectivity
requires communication right across the grid to the
boundary. A major objective, therefore, was to de-
sign a Poisson solver that was efficient and could
map well to parallel architectures, thereby making
INS a powerful tool applicable to all scales of inter-
est in oceanography.

2.2.2. Some details
We write the Boussinesq incompressible Navier

Stokes equations describing our ocean model in
semi-discrete form to second order in the time D t, in
which only time is discretized:

nq1 n 11y yyh h nqnq 2� 4sGy y= p qp qqp2h h s hy nh
D t

8Ž .

1
nq1 n nq1w yw E p 2nhnqˆsG y 9Ž .2w

D t E z

E w nq1
nq1q= Py s0 10Ž .h hE z

Ž . Ž .Eqs. 8 – 10 describe the time evolution of the
Ž .flow from step n to nq1; ys y ,w is the velocityh

in the horizontal and the vertical, and the G terms
comprise inertial, Coriolis, metric, gravitational, and
forcingrdissipation terms. They are written out in

Ž .full in Marshall et al. 1997b where time-stepping
ˆdetails may also be found. The denotes that balanc-

ing terms, involving hydrostatic pressure and gravity,
Ž .have been canceled out to better condition 9 for

numerical integration.
Ž . Ž .Eqs. 8 – 10 , in dimensional form, are solved in

the irregular geometry of an ocean basin in a spheri-
Ž .cal polar coordinate system see Fig. 2a using

finite-volume techniques. The velocity normal to all
Žsolid boundaries is zero, and a rigid lid or an im-

.plicit free surface is assumed at the upper boundary.
ŽFor brevity we have not written down equations for
temperature and salinity but these too must be stepped

forward to find, by making use of an equation of
.state, the density r .

Ž .In Eq. 8 , the pressure has been separated into
surface, hydrostatic and non-hydrostatic components
thus:

p l,s , z sp l,s qp l,s , zŽ . Ž . Ž .s hy

qqp l,s , z 11Ž . Ž .nh

Ž .where l,f, z are the latitude, longitude and depth,
respectively. The first term, p , is the surface pres-s

sure; it is solely a function of horizontal position and
time. The second term, p , is the hydrostatic pres-hy

sure defined in terms of the weight of water in a
vertical column above the depth z:

E phy Xqg s0 12Ž .
E z

X Ž . Ž .where g is the ‘reduced gravity’ g dr r r , andref

dr is the departure of the density from a reference
profile; r is the constant reference density. Theref

third term is the non-hydrostatic pressure, p . Innh
Ž .INS, w is found using Eq. 9 , from which large and

balancing terms involving the hydrostatic pressure
Ž . Žand gravity 12 have been canceled remaining terms

ˆ .are represented by G to ensure that it is wellw

conditioned for prognostic integration. In HPE, Eq.
Ž .9 is not used; rather w is diagnosed from the

Ž . Žcontinuity relation 10 . In the hydrostatic limit qs
. Ž . Ž .0 only p and p are required in Eq. 1 . Eq. 12hy s

is used to find p ; the surface pressure, p , is foundhy s

by solving the following two-dimensional elliptic
problem that ensures non-divergent depth-integrated
flow:

H11
nqnq

2= PH= p s= PG y= P= p H 13Ž .2h h s h y h h hyh

ŽHere H represents the vertical integral over
the local depth, H, of the ocean and the subscript h

.denotes horizontal .
In INS, q is set equal to unity and p must benh

determined. It is found by inverting a three-dimen-
sional elliptic equation ensuring that the local diver-
gence vanishes:

11
nq2 nq 2

2= p s=PG y= p qp 14Ž . Ž .2nh h s hy

where =
2 is a full three-dimensional Laplacian oper-

ator.
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Ž . Ž .Fig. 2. a The computational domain is carved in to a large number of finite volumes which we call zones . Each zone is characterized by a
volume and six surface areas. Velocities and fluxes are defined and held normal to the faces of the zones assuring that the divergence
operator has a simple and compact form. The faces of the zones are chosen to be coincident with the three orthogonal coordinate axes,
sketched here for a latituderlongitudervertical grid. Inset: zones adjacent to a solid boundary may be shaved allowing the grid to be

Ž . Ž .‘sculpted’ to fit an irregular boundary see Adcroft et al., 1997 . The velocity normal to any solid boundary vanishes. b Domain
decomposition adopted in the mapping of the model on to a parallel computer using the ‘data-parallel’ approach. In the schematic diagram
the ocean is decomposed in to columns distributed over 16 processors P of a parallel computer. The thick black lines indicate regions of the
domain assigned to the same processor. The thin lines indicate the ‘volumes’ within each subdomain.



( )J. Marshall et al.rJournal of Marine Systems 18 1998 115–134 121

We see that in addition to the two-dimensional
Žinversion required in HPE as in, for example, Bryan,

.1969 or Ducowicz et al., 1993 INS requires the
solution of a three-dimensional elliptic problem; this
is the overhead of INS relative to HPE. However, the
three-dimensional problem is preconditioned by mul-

Žtiplying through by an operator called the precondi-
.tioner which, in the hydrostatic limit, is an exact

inverse of E2rE z 2 and so leads to a single algorithm
that seamlessly moves from non-hydrostatic to hy-
drostatic limits; the preconditioner is an exact in-
verse in the hydrostatic limit and yields a solution
directly in that limit. Thus, when employed to study
the large-scale, the model is ‘fast’, competitive with
the fastest ocean climate models in use today based
on the hydrostatic primitive equations. Yet, as the
resolution is increased, the model dynamics asymp-
tote smoothly to the continuous Navier Stokes equa-
tions and so can be used to address small-scale
processes. Furthermore, as noted by Browning et al.
Ž .1990 , adoption of INS in the hydrostatic limit
yields a better posed system of equations.

2.3. Numerical discretization and implementation

Solution of the Poisson equation is an important
consideration in the choice of model discretization
and the manner in which the algorithm is mapped on
to a parallel computer. A robust and compact dis-
crete form of =

2 results if the divergence operator is
represented using finite volumes in which the physi-
cal domain is carved up in to many small volumes

Ž .and the velocity components and property fluxes
are defined normal to the faces that define the vol-
umes. The use of finite volume methods also makes
possible a novel treatment of the boundary in which
volumes abutting the bottom or coast may take on
irregular shapes and so be ‘sculpted’ to fit the

Žboundary see Fig. 2a, Marshall et al., 1997b, and in
.particular Adcroft et al., 1997 .

The algorithm was developed and implemented
on a 128-node CM5, a massively parallel distri-
buted-memory machine in the Laboratory for Com-

Ž .puter Science LCS at MIT. The code was written in
CMFortran, a data-parallel FORTRAN, closely re-

Ž .lated to High Performance Fortran HPF . The algo-
rithm was also coded in the implicitly parallel lan-
guage Id, permitting a multithreaded implementation

on MIT’s data flow machine MONSOON. The pro-
gramming issues are developed more fully in Shaw

Ž .et al. 1998 , where implicitly parallel multithreaded
and data parallel implementations are compared.

In deciding how to distribute the model domain
over the available processors on a distributed mem-
ory machine, we had to bear in mind that the most
costly task in the algorithm is finding the pressure
field. A preconditioned conjugate gradient method is

Ž . Ž .used to solve Eqs. 13 and 14 . The precondition-
ing operator entails nearest-neighbor communication
between adjacent cells in the horizontal and commu-
nication over all cells in the vertical. Accordingly, in
the parallel approach, we decompose the computa-
tional domain into vertical columns. In this way, the
workload is distributed across processors laterally in

Ž .equally sized rectangles Fig. 2b .
Having outlined our numerical strategy, in the

next section we go on to illustrate its use in the study
of deep convection plumes and baroclinically unsta-
ble chimneys.

3. Non-hydrostatic modeling of convection and
baroclinic instability

3.1. ConÕection

The numerical model described in Section 2 has
been used extensively to study oceanic convection
and test out scaling ideas that pertain to rotating
convection. Here we present results from one such

Ž .experiment Fig. 3 in which convection, driven by
Ž 2 .vigorous cooling from the surface y800 Wrm is

Ž .modeled at very high 50 m horizontal resolution;
the dynamics may be expected to be strongly non-
hydrostatic.

The domain is a doubly periodic box of side ;10
km and depth 2 km of initially resting unstratified,
rotating fluid. Isotropic Laplacian diffusion of heat
and momentum was employed with a Prandtl num-
ber of unity and the flux Rayleigh number Ra s109.f

ŽA linear equation of state was used but see Sander
Ž .et al. 1995 where a more realistic equation of state

.is considered . The numerical experiment used 192
=192 grid-cells in the horizontal with 40 non-
equidistant levels in the vertical: 6 m near-surface
resolution declining to 100 m at mid-depths. Inte-
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Fig. 3. Numerical simulation of convection induced by surface cooling in an initially neutral, unstratified rotating fluid in 10=10=2 km
doubly periodic box. Fields are plotted after one day of integration. The horizontal resolution of the model is 50 m. The vertical resolution

Ž . Ž .varies from 6 m at the surface to 100 m at mid-depths. a horizontal of vertical velocity, at mid-depths zsy1 km. b pattern of
Ž . Ž .horizontal currents at zsy1 km. c an east–west, chosen to pass through the downwelling center apparent at x;4.5 km. d a horizontal

of in situ temperature, at mid-depths zsy1 km.

grated forward with a timestep of 10 s each day of
integration took 3 h of CPU time on a 64 node CM5
computer.

The separation of the pressure into its constituent
parts is very effective at reducing computation, even
in this simulation where non-hydrostatic effects are

Žimportant n, evaluated from the evolving fields in
.Fig. 3, ranges from 0.1 to 1 . The number of three-

Ž .dimensional iterations required to solve Eq. 14 is
reduced by almost an order of magnitude when the
surface pressure is ‘taken out’ of the three-dimen-

sional problem by solving for it separately first.
Moreover, in a hydrostatic calculation, the surface
pressure must be found anyway, and so the cost of
the pressure inversion of INS relative to HPE is only
a factor of 4 in this particular simulation. Instead,
had we inverted for p directly, INS would have been
more than 35 times slower than HPE. It should be
emphasized that here we have not exploited the

Žsimple geometry of the model configuration a flat-
.bottomed doubly-periodic domain because our aim

is to develop methods that can be employed in
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domains as complex as ocean basins; the method
outlined here is equally applicable in irregular do-

Žmains see the simulation of the entire Mediterranean
.ocean described in Section 4, for example .

In the face of persistent cooling, 3 plumes pene-
trate progressively deeper in to the interior, lowering
the mean base of the convective layer. In time, they
distribute the influence of the intense surface heat
loss over the whole depth of the ocean. Fig. 3 shows
currents and temperatures after 24 h of sustained
surface forcing. Fig. 3a shows a horizontal of verti-
cal velocity at mid-depths indicating that the plumes
have scales of ;1 km. As expected, the vertical
velocity field is closely correlated with the in situ

Ž Žtemperature Fig. 3d: cold water sinking with veloc-
ities approaching 15 cm sy1 in plume-centers; warm

.water rising to compensate in between .

3.1.1. Scaling ideas
Oceanic convection is of interest, in part because

it represents a mode of convection which is in a
different parameter regime from atmospheric convec-
tion. The natural Rossby number:

1
l u Brot rot 2

R )s s s 15Ž .0 3 2ž /H fH f H

1 1
B B2 2

l s ; u s 16Ž .rot rot3 ž /ž / ff

ŽMaxworthy and Narimousa, 1994; Jones and Mar-
. Ž 2shall, 1993 , based on external parameters B m

y3 . Ž y1 .s the buoyancy forcing, f s the Coriolis
parameter and H the depth m of the ocean. R )o

compares the scale l at which convection comesrot

under the influence of the Earth’s rotation, to the
total depth of the convection H. This non-dimen-
sional number has played a central role in the devel-
opment of ideas about plume-scale and chimney-scale

Ždynamics in the ocean see Marshall et al., 1994;
.Marshall and Schott, in press . It turns out that R )o

is large in the atmosphere but small in the ocean. If
the fluid is stiffened by rotation on the convective

Ž .scale R ) small then downwelling induced byo

3 A random modulation of the forcing on the grid-scale about
the specified mean value was used to trigger convection.

surface forcing B, in the presence of rotation f ,
generates strong swirling motion of speed u due torot

the squashing of Taylor Columns.
In order to test scaling ideas, a range of similar

numerical experiments was carried out in which
R ) was ranged through three orders of magnitudeo

by varying the Coriolis parameter; in the reference
simulation, shown in Fig. 3, fs10y4 sy1. The
range of R ), 0.01 to 10, is typical of values ino

open-ocean convection regions.
In Fig. 4a, we plot the horizontal velocity vari-

ance at day 2 as a function of depth for this series of
experiments, normalized with respect to the non-

Ž .1r3 Žrotating scaling u s BH Deardorff andnorot
. Ž .Willis, 1967 . Velocities in an essentially non-rotat-

ing experiment, where fs10y6 sy1, indeed scale as
u —the curve is centered on unity in Fig. 4a.norot

However, we see that at higher rotation, typical eddy
velocities decrease as the rotation rate increases, as

Ž .suggested by the scaling 16 . Fig. 4b again plots the
horizontal velocity variance against depth but now

Ž .normalized with respect to u , Eq. 16 . The nor-rot

malized velocities from all the high rotation experi-
ments collapse on to the same line centered around
unity; u is indeed the velocity scale adopted by therot

plumes at high rotation. Note that it is only velocities
from the fs10y6 sy1 experiment that appear
anomalous when scaled with respect to the rotational
velocity scaling u .rot

Laboratory experiments reported by, for example,
Ž .Maxworthy and Narimousa 1994 and Coates et al.

Ž .1995 , suggest that the numerical experiments pre-
Ž .sented above, and in Jones and Marshall 1993 ,

over-emphasize the role played by rotation in oceanic
plume-scale dynamics. The consensus of the labora-
tory experimentalists is that rotational effects are
only felt when R )-0.1, rather than for R )-0.7o o

or so as in our numerical experiments. This issue can
only be resolved through the careful design of fur-
ther numerical experiments, but the way forward is
not clear.

Ž .The approach of Jones and Marshall 1993 lead-
ing to the numerical solutions shown in Fig. 3 is that

Ž .of a Large Eddy Simulation LES and uses very
Žcrude closure assumptions Laplacian diffusion of

.heat and momentum with constant diffusivities and
on those grounds has been criticized by Sander et al.
Ž . Ž .1995 and Coates et al. 1995 . More sophisticated
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Fig. 4. Horizontal velocity variance plotted as a function of depth from a series of numerical experiments, including the one presented in
Ž . Ž .1r3 Ž .Fig. 3, in which R ) was varied through 3 orders of magnitude. a : normalized with respect to the non-rotating scaling B H bo 0

normalized with respect to the rotating scaling u .rot

Žclosure schemes exist more often than not tuned to
.atmospheric observations , but even the most sophis-

ticated LESs assume the turbulence is isotropic and

homogeneous and thus make gross assumptions about
Žthe nature of the small scale turbulence a critical

review of the method in the atmospheric context is
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given by Mason, 1994; see Garwood et al., 1994 and
Denbo and Skyllingstad, 1994, for examples of LES

.applied to ocean convection . However rotating con-
vection is strongly anisotropic—both because of the
nature of the plumes, which are stiffened by rotation,
and because of the overall organization of the flow
by rotation. The advantage of LES is that simulations
with Reynolds numbers, Re, approaching realistic
values can be made; its disadvantage is that results
obtained using that method may depend on assump-
tions implicit in the assumed closure hypotheses.

An alternative approach, that of direct numerical
Ž .simulation DNS , is one in which all the dynami-

cally active scales of motion, down to the Kol-
mogorov scale, are resolved; it is being pursued by

Ž . Ž .Julien et al. 1996 and Kerr et al. 1995 but,
because of the enormous computational cost, is lim-
ited in the range of Re it can study. However,
anisotropies in mixing properties, and boundary layer
processes, can be examined without any pre-imposed
bias in DNS. Since realistic Re cannot be examined,
the DNS approach instead searches for scaling be-
havior in the solutions, and then extrapolates to
realistic values, assuming that the flow remains in
the same dynamical regime.

The underlying hydrodynamics explored in the
above numerical experiments can be modified, but
not fundamentally changed, by thermobaric effects.

Ž .Sander et al. 1995 repeat the Jones and Marshall
Ž .1993 experiments with a more realistic equation of
state and show that thermobaric effects lead to en-
hanced vertical accelerations in the water column.

Ž .Garwood et al. 1994 , using an LES model also find
important modifications to the vertical profile of
buoyancy flux in deep polar sea thermal convection.
They also show that thermobaric effects make it
possible to generate conditional instabilities if salin-
ity stratification is partially balanced by thermal

Ž .stratification as for example in the Greenland Sea .
These classes of instability are mathematically analo-
gous to conditional instabilities of a moisture-laden

Ž .atmosphere reviewed by Emanuel, 1994 .

3.2. The switch-oÕer from conÕection to baroclinic
instability

What happens if we impose a buoyancy forcing
which varies in space thus inducing a mixed layer

which is deeper and hence colder in one place than
another, as in the schematic diagram shown in Fig.
1b?

Ž .In Fig. 5 a resting, stratified fluid Nrfs10
modeled using INS was subject to a steady buoyancy
loss through the sea surface. The cooling is indepen-
dent of down-channel coordinate but increases across
the channel following a hyperbolic tangent variation.
Thus, in the southern third of the channel there is
weak surface forcing, in the northern third fairly
constant densification equivalent to a heat loss of
800 W my2 , and a sharp transition in between. As in
the experiment described in Section 3.1, convection
was triggered by the inclusion of grid-scale noise in
the forcing field. A linear equation of state is speci-
fied dependent on temperature alone and the resolu-
tion is sufficient to represent gross aspects of the
convective process.

The channel was modeled using a singly periodic
Ž200=120=20 grid horizontal resolution of 250 m,

.mean vertical resolution 100 m . Integrated forward
with a timestep of 120 s, the channel experiment
required one hour of CPU time on a 32 node CM5
computer for each month of simulation. Because of
the presence of relatively strong stratification in this
experiment, non-hydrostatic effects are somewhat
less important here than in the unstratified case
Ž .ns0.1 , and an even greater improvement in per-
formance is seen when the pressure separation is
made. In using our INS model, the number of three-

Ž .dimensional iterations required to solve Eq. 14 is
reduced by an order of magnitude by solving for the
surface pressure separately first. In this case, the
relative cost of the pressure inversion of INS vs.
HPE is only a factor of 3; had we inverted for p
directly, INS would have been more than 30 times
slower than HPE.

For the first few days of integration a mixed layer
of depth, h, develops according to a simple, non-
rotating, one-dimensional law which predicts the
depth of mixing due to the upright overturning.
Namely:

'2 Bt
hs 17Ž .

N

where B is the buoyancy flux through the surface at
time t and N the Brunt–Vaisalla frequency. Initially,¨ ¨ ¨
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Fig. 5. INS simulation of an initially stratified fluid resting in a 2 km-deep channel and subject to cooling from its upper surface.
Temperature at a depth of 65 m is plotted. The cooling varies across the channel in the manner of a hyperbolic tangent. Plume-scale
Ž .non-hydrostatic convection at day 3 gives way to finite amplitude baroclinic instability at day 6. By day 9 a mature field of geostrophic
turbulence exists.

the vertical mixing is facilitated by upright convec-
tion as in the previous example. But, as a result of
the developing density gradient across the channel,
the flow adjusts to thermal wind balance and the
flow evolves from plume-scale convection at day 3
to finite amplitude baroclinic instability at day 6,

with a mature field of geostrophic turbulence by day
9. A surface intensified jet emerges in balance with
the across channel temperature gradient, with the
eddying component of the flow dominating. Since
there is no stress applied at the ocean surface the
global zonal momentum cannot change and eastward
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flow at the surface is compensated by a westward
current below. The length-scale for the baroclinic
instability at day 6 is around 5 km, in reasonable
agreement with predictions from linear instability

Ž .analysis see Haine and Marshall, 1998 .
Ž . ŽA study of the potential vorticity PV field not

.shown reveals the key dynamical processes at work.
The largest scale features are the baroclinic eddies

which mix southern, high ambient PV fluid with the
convectively modified low PV water to the north.
There is a strong gradient between these two water
types with a relatively small amount of water with
intermediate PV; in the north patches of negative PV
identify the energetic plumes which draw the PV and
buoyancy from the fluid. But there is also a system-
atic lateral flux achieved by the eddies which be-

Ž .Fig. 6. The vertical velocity obtained by on the left integration of INS at day 6 of the mixed-layer channel calculation shown in Fig. 5 and
Ž . Žon the right obtained using HPE, all other model details being exactly the same. The bottom two panels compare w x, ys27 km,

. Ž . Ž .zs400 from the non- hydrostatic left and hydrostatic right runs, again at day 6.
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come the major contribution to the buoyancy budget
in the south where the cooling is weak.

Thus, in the presence of lateral buoyancy gradi-
ents, we observe a change in the manner in which
buoyancy is drawn through the mixed layer. In na-
ture such gradients are always present, either in the
ambient stratification or the prevailing forcing; thus,
one expects that if those inhomogeneities persist,
mixed-layer baroclinic instability will ultimately take
over from upright convection as the dominant mode
of buoyancy transfer.

3.3. Hydrostatic modeling of conÕection

Fig. 6 repeats the mixed-layer calculation pre-
sented in Section 3.2 but with HPE rather than INS.
It is interesting to observe that HPE attempts to
represent the convective overturning of the fluid
column even though acceleration terms in the verti-
cal momentum equation are absent. Statically unsta-
ble columns are overturned, through appropriate ho-
mogenization of the temperature and salinity fields,
by HPE but at the grid-scale of the model and the
resulting field of vertical velocity is up to twice as
strong as in INS and much less smooth and coherent.
This is just as one would expect from linear Rayleigh
theory; the static instability of a column is more
vigorous and occurs at smaller spatial scales in hy-
drostatic compared to non-hydrostatic convection.

Ž .Our split solver approach renders INS left column
Ž .only 3 times slower that HPE right column .

3.4. Simulation of an open-ocean chimney

Now let us consider a stratified ocean exposed to
surface buoyancy loss localized at the center of a
box rather than varying across a channel. Surface
waters beneath the cooling disc will become dense
and overturn forming a convectively modified layer
of depth h. Toward the center of the cooling disc,
fluid will not be aware of the spatial inhomogeneity

in the cooling—here the mixed layer will deepen, at
least initially, in a one-dimensional manner through

Ž .the agency of plumes in accordance with Eq. 17 .
But ultimately, and as is vividly demonstrated in Fig.
8, convection gives way to baroclinic instability.

Just as in the channel scenario this integration
includes non-hydrostatic dynamics as plumes pene-
trate into the fluid interior, but again n is relatively
small, n;0.1. Integrated forward with a one minute
timestep this integration requires one hour of 32
node CM5 compute time for each day of integration.
Using the split solver the INS overhead relative to
HPE is a factor of 3. Without the separated pressure
solver, INS simulation would require 30 times more
computer time than the HPE counterpart.

Since away from the disc of cooling the stratifica-
tion takes up its ambient value while in the center of
the chimney, the stratification is being eroded away,
then around the periphery of the chimney isopycnal
surfaces will bow up from their resting level to cut
the ocean’s surface. Associated with the tilting
isopycnal surfaces, a thermal wind is set up estab-
lishing a ‘rim current’ around the chimney within a
day or so. The width of the rim current region and its
baroclinic zone will be initially of the order of the
Rossby radius of deformation. Moreover, the rim
current in thermal wind balance will be susceptible
to baroclinic instability.

So at the center of the chimney the mixed-layer
Ž .deepens according to Eq. 17 until the growing

baroclinic instability begins to sweep the water sur-
rounding the cooling disc in to the chimney and
carry convected fluid outward and away below. If
the cooling persists, the rate of deepening will be
slowed, and may eventually be halted by finite-am-
plitude baroclinic eddies. This limit, in which the
lateral flux balances loss from the surface, was stud-
ied in the context of a ‘heton’ model in Legg and

Ž . Ž .Marshall 1993 and Legg et al. 1996 as well as
through more conventional numerical models and

Ž .laboratory experiments in Visbeck et al. 1996 and
Ž .Whitehead et al. 1996 .

Ž . Ž . Ž . Ž .Fig. 7. Numerical simulation of an open-ocean convective chimney using INS. In a , b , c and d the vertical component of absolute
Ž .vorticity is plotted at a depth of ;200 m after 3, 4, 5 and 7 days respectively. Below, in e , we show a vertical of temperature through the

Ž .middle of the chimney at day 6. Again we see that plume-scale convection evident at day 3 gives way to finite amplitude baroclinic
Ž .instability from day 4 onwards .
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The sequence of events is clearly demonstrated by
integration of INS. Fig. 7 presents maps of the
vertical component of absolute vorticity near the
surface from a simulation of the deepening of a
chimney in to a stratified resting fluid in which, N,
measured against the Coriolis parameter, f , is Nrf
s5. Buoyancy was extracted from a resting, strati-
fied fluid, over a disc 16 km in diameter at the center
of the domain. The resolution of the model is suffi-
cient to resolve baroclinic eddies, but also gross
aspects of the convective plumes themselves. By day
3 convective plumes are present in the interior of the
cooling region ‘burrowing’ in to the stratified fluid
beneath; a rim-current is beginning to develop mean-
ders, evidence of baroclinic instability. By the end of
day 4, a wave-number five baroclinic instability is
clearly visible while upright convection has dimin-
ished in intensity. Finally, at day 6, the plumes have
all but disappeared and five large instability eddies
are breaking the chimney apart, sweeping light fluid
inwards and thereby arresting the downward penetra-
tion of the mixed-layer.

4. Incompressible Navier Stokes in the hydrostatic
limit; simulation of the Mediterranean using INS

We have described the modeling of convection
and baroclinic instability with INS. Can we employ

the same algorithm with economy to study large-scale
processes? The circulation of the Mediterranean with
its highly irregular topography and small deforma-
tion radius provides a challenge.

Fig. 8 plots the current field at 40 m from a 1r48

resolution Mediterranean simulation in March of year
Ž Ž Ž ...14 using INS i.e., in which qs1 in Eq. 8 . The

model has 184=63 grid-cells in the horizontal with
19 non-equidistantly spaced levels in the vertical: 10
m near-surface resolution declining to 500 m at
depth. In this simulation n is only ;10y4 ; the
simulation is to all intents and purposes hydrostatic.
However, because we employ the split pressure
solver, the INS method can still be applied. In this
limit the non-hydrostatic pressure inversion reduces
to a one-dimensional ODE, as discussed in Section
2.1. The overhead of INS is negligible because the
ODE along the vertical axis can be performed di-
rectly, and rapidly, in a single sweep using L-U
decomposition. The simulation took 3 h of CPU time
per year on 64 nodes of a CM5. If the pressure
splitting were not exploited then p would have to be
solved for from the full three-dimensional Laplacian
and INS would have been 30 times slower than HPE.

The model was initialized with the annual mean
Ž Ž ..Brasseur climatology Brasseur et al. 1996 , and

spun-up for 10 years. From then on it was forced
Žwith ECMWF European Centre for Medium Range

.Weather Forecasting twice-daily surface wind-stress

Fig. 8. The circulation produced in a 1r48 resolution INS Mediterranean simulation. Shown here are currents at a depth of 40 m.
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and boundary conditions. The open boundary at
Gibraltar was forced by tuning the salinity gradient
in the eastern Atlantic to reproduce a realistic Alge-
rian current.

Principal features, including the Liguro–Prove-
ncal current, the cyclonic circulation in the Gulf of
Lions, and the Algerian current in the western basin
are present, as are the Rhodes Gyre and Mersa
Matruh circulations in the eastern basin. In general,
the current systems are perhaps somewhat broader
than is observed; the typical radius of deformation in
rather small in the Mediterranean—only 15 km—
suggesting that very much higher resolution is re-
quired to resolve the narrowness of the currents and
their instabilities. The Alboron gyre is absent, for
example, and the instabilities observed in the Alge-
rian current are not present.

The calculation described here was combined by
Ž .Menemenlis et al. 1997 with tomographic inver-

sions of the thermal structure of the Western
Ž .Mediterranean taken by Send et al. 1977 , to esti-

mate the state of the circulation.

5. Conclusions

We have outlined the rationale behind, and pre-
sented illustrative calculations from, an INS model
which can relax the hydrostatic approximation and
yet remain competitive with models that assume
hydrostatic balance in that limit. The pressure field,
which ensures that evolving currents remain non-di-
vergent, is found by inversion of a three dimensional
elliptic operator subject to Neumann boundary condi-
tions. A major objective has been to make this
inversion, and hence non-hydrostatic modeling, effi-
cient. By separating the pressure in to surface, hy-
drostatic and non-hydrostatic components, and care-
fully preconditioning the resulting coupled 2-D and
3-D elliptic equations, a simple and efficient algo-
rithm results. The approach maps naturally on to a
parallel computer and suggests a domain decomposi-
tion that allocates entire vertical columns of the
ocean to each processing unit. The resulting model is
efficient and scalable and suitable for the study of
the ocean circulation on horizontal scales less than
the depth of the ocean, right up to global scale.

This methodology could be readily incorporated
in to existing hydrostatic models allowing them to
move smoothly from hydrostatic to non-hydrostatic
limits; in the hydrostatic limit our INS algorithm
Ž .even though it is prognostic in w is equivalent to,
and no more demanding of computer resources than,
a hydrostatic model. But, unlike a hydrostatic model,
as the resolution of INS is increased it can be used to
address small-scale phenomenon which are not hy-
drostatically balanced. Even in experiments of re-
solved convection using INS, where non-hydrostatic
effects play a central role, separation of the pressure
field in to its component parts leads to great savings.
The resulting model is uniquely versatile with myr-
iad possible applications. In the hydrostatic limit, it
can be used in a conventional way to study the
general circulation of the ocean in complex geome-
tries. But because the algorithm is rooted in INS, it

Ž . Ž .can also address for example i small-scale pro-
cesses in the ocean such as convection in the mixed

Ž .layer, ii the scale at which the hydrostatic approxi-
Ž .mation breaks down, and iii questions concerning

the posedness of the hydrostatic approximation raised
Ž .by, for example, Browning et al. 1990 . It is inter-

esting to note that—as described in Brugge et al.
Ž .1991 —the incompressible Navier Stokes equations
developed here are the basis of the pressure-coordi-
nate quasi-hydrostatic atmospheric convection mod-

Ž .els developed by Miller 1974 .
Finally, we anticipate that hydrodynamical en-

gines rooted in INS will be increasingly used as
Žimproved computational technology see, e.g., Hill

.and Shaw, 1996 affords higher and higher resolu-
tions.
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Appendix A. Incompressible Navier Stokes in the
hydrostatic, geostrophic limit

We derive here the non-dimensional equations
used in Section 2 to identify hydrostatic and non-hy-
drostatic regimes and to study the behavior of the
incompressible Navier Stokes model in the hydro-
static, geostrophic limit.

We write down the momentum and thermody-
namic equations for an incompressible Boussinesq
fluid in Cartesian coordinates, non-dimensionalize
them, and go on to consider the balance of terms
when the flow is close to hydrostatic and geostrophic
balance:

Dvh
q= p qp qp q f k=v s0 18Ž . Ž .h s hy nh hDt

Dw E pnh
q s0 19Ž .

Dt Ez

D bh 2qN ws0 20Ž .
Dt

=Pvs0 21Ž .
where:

D E
sv P=qw 22Ž .hDt E z

and k is a unit vector directed vertically upwards,
and f is the Coriolis parameter.

To simplify our analysis, we have assumed an
equation of state in which the density is a linear

Ž .function of T and S and independent of p ; ‘b’ is
the buoyancy:

dr
bsyg

rref

where the density is, separating out a constant refer-
Ž .ence value and an ambient stratification, r z , typi-0

cal of the fluid under study:

rsr qr z qdr x , y , z ,tŽ . Ž .ref 0

and:

g Er02N sy
r E zref

is the stratification.

Note that in the above psd rr has beenp ref

separated in to its hydrostatic, non-hydrostatic and
surface pressure components. Furthermore the hydro-

Žstatic pressure which satisfies the relation E p rE zhy
.qbs0 has been canceled out with gravity in Eq.

Ž .19 .

A.1. Dimensionless equations

We now scale the variables thus:

v by U ; w by Wh

x by L; z by h

p , p by P ; p by Ps hy hy nh nh

f by F

r g Dr1 02b by g ; N by
r h rref ref

Ž .where r is a measure of the magnitude of dr x, y, z1

and D r is the change in r over a depth h.0 0
Ž Ž .Ž X X. XSetting DrDt™ UrL D rDt etc, where in-

Ž . Ž .dicate non-dimensional parameters, Eqs. 18 – 21
become:

DX vX P FLh hy X X X X Xq = p qp qnp q f kŽ .X h s hy nh2 ž /ž /Dt UU

=vX s0 23Ž .h

DX wX P L U E pX
nh nh

qn s0 24Ž .X X2 ž / ž /ž /Dt h W E zU

DX bX
Dr L W0 X 2 Xq N w s0 25Ž .X ž / ž /ž /Dt r h U1

W L E wX

X X
D Pv q s0 26Ž .Xh h ž / ž /U h E z

where:

Pnh
ns

Phy

is the non-hydrostatic parameter.
Now let us suppose that the flow is ‘close’ to

geostrophic and hydrostatic balance:
geostrophic

P FL 1hy
s s 27Ž .2 U RU o
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hydrostatic

r gh1
P s 28Ž .hy

rref

Ž .Continuity 26 together with geostrophy implies
that:

W L
,R 29Ž .oU h

Ž X . X X 2 X Ž .and since D rDt b ,N w ,1, Eq. 25 implies
that:

W L r1
, 30Ž .

U h Dr0

Ž . Ž .Combining Eqs. 27 – 30 , we deduce that:

R R2 ,1 31Ž .i o

where R is the Richardson number of the flowi

given by:

N 2 h2 gDr h c2
0

R s s s 32Ž .i 2 2 2U r U Uref

where c is the speed of internal gravity waves.
Ž .The result 31 is well known and defines the

quasi-geostrophic regime; if the R of the large-scalei

flow is large, then the R is small and the flowo

quasi-geostrophic.
Ž . Ž .We may now write the set Eqs. 23 – 26 in

terms of R , R and gshrL, the aspect ratio of thei o

motion thus:

DX vX
h X X X X X XR q = p qp qnqp q f k=v s0Ž Ž .X0 h s hy nh hDt

33Ž .

DX wX
E pX

nh
q s0 34Ž .X XDt E z

DX bX

X 2 XqN w s0 35Ž .XDt

E wX

X XR q= Pv s0 36Ž .Xo h hE z

where:

g 2

ns
R i

is the non-hydrostatic parameter derived in Section
2.1.
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