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ABSTRACT

The combined problem of determining the ocean circulation and improving the geoid from sateilite
altimetry is formulated and studied. Minimum variance estimation is used to form optimum mtimam.of
the ocean topography and the geoid. These estimates are a function of the altimeter observations, prior
knowledge of the ocean circulation and prior knowledge of the geoid. Particular emphasis is placed on ?he
use of a dynamical ocean model as a source of @ priori oceanographic information capable of discriminating
between geoid errors and ocean topography. The technique is illustrated in a simulation study of Gulf Strea{n
variability, in which an ocean topography, degraded by noise representing the uncertainty in a gravimetric
geoid, is reconstructed by assimilation into an ocean model. At the same time an impraved estimate of the

geoid is made.

1. Introduction

A satellite altimeter flying typically at a height of
~ 1000 km, measures the distance between itself and
the sea surface to centimeter accuracy. Given an
independent measurement of the position of the
satellite one can determine the sea surface h,, relative
to a suitable reference ellipsoid—see Fig. 1. The shape
of this surface is of interest because it contains
information about the geoid and the ocean circulation.
If the ocean were at rest then its surface would be
the equipotential defining the geoid which, due to
inhomogeneities in the earth, undulates about the
reference ellipsoid by an amount A, ~ 100 meters.
But because the ocean moves, the actual sea surface
deviates from the geoid by an amount & = h, — h,,
~1 meter. This small departure from the geoid
interests the oceanographer for it contains information
on tides and geostrophically balanced surface currents.
The object of the present study is the identification

of that part of the sea-surface elevation relative to the -

geoid associated with the surface geostrophic flow
(which we will call the ocean topography, OT).

The limiting factor in the use of altimetry for
ocean circulation studies will not be so much the
determination of A, (although extra-ordinary precision
is required in the instrument and tracking) but rather
the uncertainty in the shape of the geoid, for it
appears that the errors in presently available geoid
models can exceed the OT signal at dynamically
interesting scales. Thus the ultimate objective of
absolute surface velocity determination from altimetry
must await more accurate geoid models. '

Prior to the advent of satellite altimetry, the shape
of the geoid could only be inferred from satellite
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orbit calculations and surface gravity data. The tra-
jectory of a satellite is sensitive to the longest wave-
lengths of the gravity field, and so the errors in
satellite geoids increase with degree. Such models
cannot be extended with any reliability much beyond
degree and order 20 X 20 (for a discussion of the
implications of this for ocean dynamics see Wagner,
1981). But even if a reliable model of this resolution
were available, it could only represent wavelengths
down to 2000 km, leaving obscured many of the
most interesting features of the ocean circulation such
as boundary currents and jets. Fine resolution (~10
km) geoids have been developed for localized regions
such as the northwest Atlantic, by incorporating
surface gravity measurements (e.g., see Marsh and
Chang, 1978). However, large gaps in the gravity
coverage remain and global measurements of the
earth’s gravity ficld at fine resolution is not a realistic
possibility. Until dedicated satellite gravity missions
such as the Geopotential Research Mission (GRM)
are underway (designed to give 10 cm accuracy down
to wavelengths of 100-200 km), altimetry is the only
realistic means of determining the fine structure of
the geoid. Such altimetric geoids, though, cannot be
used for oceanographic purposes because they lump
the mean circulation in with the geoid. This is the
central difficulty that must be overcome if the full
potential of altimetry in ocean circulation studies is
to be realized.

A way forward is suggested by the realization that
the oceanography and geodesy are inseparably linked
when viewed through the eyes of the altimeter, and
should therefore be determined simultaneously. Al-
though present geoids blurr the OT rather severely,
the OT will come more into focus as the geoid
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FIG. 1. Schematic diagram showing the sea surface and geoid
relative to the reference ellipsoid: 4,, the physical sea-surface; 4,,
the geoid and A = h, — h,, the departure of the sea-surface from
the geoid.

becomes known at smaller and smaller scales. It
seems reasonable to suppose that if the signal-to-
noise ratio is not too small (regarding the OT as
signal and the geoid error as noise) one could profit-
ably exploit prior knowledge of the ocean circulation
to help separate it from the residual geoid error, and
in the process improve the geoid.

The present paper is a contribution to the study of
this combined problem of determining the ocean
circulation and correcting the geoid from satellite
altimetry. It has been discussed in general terms
before by Wunsch and Gaposchkin (1980) who couch
it in the formalism of linear inverse theory. We use
the same technique here, but approach it from a
slightly different perspective, regarding the determi-
nation of the geoid and OT as an exercise in objective
mapping. We adopt the hopefully familiar jargon that
goes with “objective analysis,” the meteorological
manifestation of minimum variance techniques.

Wunsch and Gaposchkin (1980) limit the number
of OTs consistent with altimetric data by combining
them with hydrographic data. Instead, or perhaps in
addition, we suggest that the assimilation of altimetric
data into a dynamical ocean model could be a
powerful way of discriminating between geoid errors
and OT. The geoid is adjusted so that the implied
OT is consistent with the prior dynamical constraints
of the model.

Such assimilation techniques are also of interest
because altimetric missions should not be seen in
isolation, but only as part of larger observing cam-
paigns using more conventional measuring techniques.
Direct observations of ocean currents, density, surface
stress, as well as surface elevation will be available
but irregularly distributed in space and time, and
each with their differing error characteristics. Perhaps
the only way of making sense of this diverse infor-
mation is through assimilation of data into ocean
models which can dynamically link the variables.

In Section 2 we set out the under-determined
problem of solving for the ocean circulation and
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improving the geoid from satellite altimetry. In Section
3 we describe how the dynamical information in an
ocean model can be used to discriminate between the
geoid and OT signal in the altimetric data. This idea
is developed more quantitatively in Section 4 where
minimum variance solutions for the OT and geoid
are written down and studied. A practical illustration
of the technique is presented in Sections 5 and 6
where, in a simulation study of Gulf Stream variabil-
ity, the OT degraded by noise representing the un-
certainty in a gravimetric geoid is reconstructed by
assimilating altimetric data into an ocean model.

2. A reference problem

In this section the problem of determining the
ocean circulation and improving the geoid from
satellite altimetry is defined more precisely. By way
of illustration frequent reference is made to a simu-
lation study of Gulf Stream variability (developed
further in Sections 5 and 6) in which a series of
synoptic maps, degraded by noise representing uncer-
tainty in the gravimetric geoid, is sampled to simulate
an altimetric data set. From this noisy data we form
an estimate of the true OT and correct for the geoid.
Before proceeding it should be emphasised that the
approach we adopt to the combined problem has
general applicability. The focus on synoptic mapping
should be regarded as a nominal one, chosen for
illustrative purposes only in an interesting oceano-
graphic context.

An eddy resolving ocean circulation model of Gulf
Stream variability is used to generate a sequence of
truth OTs at time-steps K on an I X J finite difference
grid: h. The h is a column vector of dimension 7
= ] X J containing the OT at the grid points of the
model at time K.

It is further supposed that the time variant geoid
mapped onto the I X J grid is h,. The simulated
height of the sea surface relative to the center of the
earth is thus

hog = hy + hg,. @2.1)

Having chosen discrete values on an / X J grid at
time K as a representation of h,, the truth field is
sampled to simulate the spatial density and temporal
frequency of the tracks laid down by a satellite
altimeter in an exactly repeating orbit, thus forming
a stream of observations of the sea-surface height z,:

Zoe = Al + €. 2.2)

The observation vectors z, at time K have a dimension
D, say, where p <€ n. The ¢, is the error vector in the
altimetric measurement (instrumental and tracking).
The permutation matrix A of dimension (p X n)
consists of 0’s and 1’s and maps the field h,, onto
the observations z,. It samples h, simulating the
regular spatial pattern of the (repeated) satellite tracks.
For example, Fig. 2a shows an OT which in our
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FIG. 2. (a) The six-month time mean truth OT, h (contour interval, CI. = 6 cm) showing two counter-
rotating wind-driven gyres in a 1000 X 2000 km basin (thick lines are positive contours, thin lines negative,
and the very thick line the zero contour). Simulated altimetric tracks are indicated by the regular pattern of
crossing lines, and give a spatial coverage appropriate to a satellite flying in a 7-day repeat orbit at an altitude
of 1000 km. (b) The simulated error in a gravimetric geoid ¢, (C.I. = 15 cm) taken from a normal distribution

with zero mean and standard deviation 30 cm.

simulation study is regularly sampled along the -sat-
ellite tracks represented by the thick black lines.
Equation (2.2) describes the situation in which at any
time K there are incomplete and inaccurate measure-
ments of the sea surface height. From these measure-
ments we wish to form the best possible estimates of
the OT and the geoid.

However, if the only information available is z,,
then the problem as stated is under-constrained be-
cause there are an infinite number of h and h,
consistent with the observations: there are not (and
never can be) enough measurements to determine h
and h, completely (p < 2n). Mathematically the
problem is ill-posed, since there is no H such that HA
= AH = |, the identity matrix (the inverse of A does
not exist because p # »). There is no alternative but

to rely on prior statements about the nature of the
solutions in deciding which ocean state and geoid is
the most likely.

Accordingly (2.2) is augmented with a priori esti-
mates _(denoted by a caret) of the OT and geoid,
h(-), hg( ) of dimension 7 i.e., estimates of the geoid
and OT that would have been made in the absence
of altimetry: A

h(—) = Ih, + ¢, 2.3)

h(—) = Ih + ¢,. (2.4)

where (—) represents an estimate prior to the arrival
of altimeter observations and e,, ¢, are the errors in
these a priori estimates. For example, hg( ) could be
a nonaltimetric geoid derived from ship gravity mea-
surements, or a geoid from a future satellite gravity



MARCH 1985

mission. The h(—) could be a dynamic topography
derived from hydrographic measurements or a “first
guess” provided by a dynamical ocean model.

The problem of determining the ocean circulation
and improving the geoid from satellite altimetry can
now be stated thus: given

(i) altimeter observations of the sea surface height
along repeated tracks z,, Eq. (2.2) and

(ii) our prior knowledge of the geoid and ocean
circulation, hg( ) and h(-), Egs. (2.3) and (2.4) re-
spectively,

make an estimate of the OT over the I X J grid and
improve the geoid.

This, in words, describes the general problem of
solving for the ocean circulation and the geoid si-
multaneously from satellite altimetry. Although easy
to state it is not obvious how to proceed both because
of doubts about the most appropriate forms for
h(-) and hg( ), and once chosen uncertainty in the
quantification of their errors. In practice most inves-
tigators have approached the oceanography and geo-
desy separately without exploiting prior knowledge of
ocean circulation.

a. Solving for h and h, separately

If we are content to form an estimate of the OT
along the satellite tracks only, then the best available
non-altimetric geoid can be subtracted from the sea
surface height measured by altimetry to compute
(solving for as many unknowns as there are measure-
ments) ) )

‘ htrack =z,— Ahg(__)

=AM +e) te 2.5)

This is the approach taken by Cheney and Marsh
(1981) for example, who subtracted the GEM 8
gravimetric geoid from Seasat altimetric sea surface
heights in the northwest Atlantic (for a review of the
Seasat mission see Born et al., 1979). The problem
with Eq. (2.5) is’that even with perfect altimetry e,

= 0, the ocean signal is blurred by geoid noise ¢,. In_

the absence of additional information, it is impossible
to decide which part of h is ocean signal and which
part is the geoid error.

An improved estimate of the geoid can be made
by averaging z, over many passes, ignoring the con-
tribution from the mean circulation, and combining
it with the gravimetric geoid

z) }

hy(-)

where (+) represents our estimate after the arrival of
observations. Equation (2.6) is an over-constrained
problem with enough information to define all the

parameters (n + p observations n unknowns) which
can be approached by least-squares procedures. For

to give a new improved

geoid h,(+), (2.6)
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example, Rapp (1983) uses a Seasat altimetric sea
surface to fill in the fine-structure of a nonaltimetric
geoid. However, the geoid computed as in (2.6),
although much improved by altimetry, cannot be
used for absolute geostrophic velocity determination
[for example, to provide the geoid in (2.5)] because
the mean circulation is lumped in with the geoid.
The approach represented by Eqgs. (2.5) and (2.6)
illustrate the fundamental limitation for ocean cir-
culation purposes that will always be present if the
geodesy and the oceanography are tackled separately.

b. Solving for h and h, simultaneously

The drawback of the approach symbolized in Egs.
(2.5) and (2.6) is that the geodesy and oceanography
are decoupled from one another because prior knowl-
edge of the ocean circulation, h(—), Eq. (2.4) is not
exploited.

Suppose, however, that full use of this knowledge
is made by forming “observations” of the OT and

geoid )
z, — Ah(—) }
z, — Ahg(-)

% 2.7)
Zy, =

which are then combined with the prior estimates
h,(—) and h(-) thus:

he(=) to give a new improved

z, } geoid hy(+), (2.82)
h(-)] to give a new improved

Z } OT h(+). (2.80)

Now in contrast to Egs. (2.5) and (2.6) prior knowl-
edge of the ocean circulation is to put to use in the
estimation of the ocean topography and the geoid.
Note that Eqs. (2.8a) and (2.8b) reduce to Eqgs. (2.6)
and (2.5) respectively when h(—) is set to zero in
Eq. (2.7). A

The use of h(—) to constrain our estimates recog-
nizes that altimetric information should not be con-
sidered in a vacuum. In addition to altimetry there
are many independent oceanographic measurements
and much understanding of the dynamics of ocean
currents, their space and time scales. It is through
h(—) that such diverse information can be brought to
bear in the analysis of the altimeter data.

Equations (2.3) and (2.4) are best regarded as “a
priori constraint” equations or ‘“virtual observations”
which turn the under-determined problem (given z,
there are an infinite number of possible h and h,)
into an over-determined one which can be tackled
using standard statistical techniques. Writing these
prior estimates as in Egs. (2.3) and (2.4) shows
explicitly that they can be thought of as observations,
just as in Eq. (2.2). (Rodgers, 1976, has a particularly
lucid discussion on the nature of a priori information
in inverse problems when viewed from this perspec-
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tive: see also Jackson, 1979). Indeed, all a priori
statements (dynamical constraints, smoothness criteria
etc.) can be treated as if they were observations by
writing them down in the form Eq. (2.2). This prior
knowledge of the geoid and ocean circulation restricts
the class of admissible solutions consistent with the
actual observations. Of course, the solutions to the
new problem Eq. (2.8) can never be unique functions
of the data, but will also depend on the nature of the
a priori constraints,

The use of oceanographic information in conjunc-
tion with altimetry has been discussed before by
several authors. Wunsch and Gaposchkin (1980) de-
scribe in general terms the problem of combining
hydrography with geodesy and altimetry. The ap-
proach is implicit in the work of Cheney and Marsh
(1981) who compare the relative merits of three geoid
models by making use of in situ oceanographic
measurements.

In the next section we discuss how a geoid error
might be corrected for by adjusting it so that the
implied OT is consistent with prior dynamical con-
straints contained in an ocean model.

3. Ocean models as a source of a priori information

The ocean model is a particularly valuable source
of a priori information since it is a concise statement
of our dynamical understanding of the ocean circu-
lation. Of course this understanding is incomplete
and so the models are far from perfect. But, to the
extent that a particular model is a faithful represen-
tation of important aspects of the dynamics it will be
a more or less useful analysis tool. A sensible and
powerful direct application of models is to use them
to provide h(—) and thus assist in (i) the interpolation
of data in space and time and (ii) the discrimination
between geoid errors and ocean topography.

a. Interpolation

The interpolation problems in the ocean are so
acute that all our prior knowledge of ocean dynamics
must be brought to bear in the analysis of data if we
are to make the best use of the data we have. The
problem of constructing an analysis from incomplete
data is familiar to meteorologists who handle their
global data sets by assimilation into global dynamical
models. Oceanographers have little similar experience,
both because there are only limited operational re-
quirements, but also because prior to the advent of
altimetry there has been no observing system with
sufficient time and space resolution. Altimetry, to-
gether with proposed oceanographic observing pro-
grams such as the World Ocean Climate Experiment
(WOCE) and the Tropical Ocean-Global Atmosphere
(TOGA) experiment is encouraging modellers to con-
template assimilation of data into ocean models.

One would suppose, for example, that a dynamical
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model of geostrophic eddy variability would be a
useful tool in the analysis of altimeter data for
synoptic mapping purposes, advecting information
between satellite tracks and projecting information
from one satellite pass to the next. In this way the
past history of the data set can be used to limit the
number of possible fields which fit the data, since the
fields evolve according to dynamical laws. The best
way of achieving this is to assimilate the observations
into an ocean model and use the model to carry the
estimate of the ocean topography:

flx.H = Ll‘il( + €m, (3.1)

where L is a finite difference operator which advances
the ocean topography estimate forward one time step,
and e, represents dynamical and physical processes
not described or resolved by the model. The following
continuous updating strategy can be envisaged:

given an initial estimate of the state of the OT,
h«-o, Eq. (3.1) is integrated forward in time to
provide an estimate of the state of the ocean which
i1s imperfect because of imperfections in the initial
state and the model physics. When observations z,
of h become available, they are combined with a
“first guess” to the true field provided by the ocean
model h(—) to give a new improved estimate of ocean
circulation h(+), Eq. (2.8b). The ocean model is then
integrated on from h(+) to the next observation time.
The procedure relies on there being some useful
information in the first-guess field.

The most enlightening way of viewing the use of a
model in this way is as a measuring instrument
providing “virtual measurements” which are of the
same nature as the real observations, but which differ
only in their error characteristics.

b. Separation of geoid error from ocean topography

How can the dynamical information in an ocean
model be used to separate the OT signal from other
components such as geoid and instrument error?

First, it is worth reminding ourselves that no
amount of mathematical analysis can make up for a
basic lack of information. If there is no information
on the error structures of h(—) and hy(—) then they
are not useful in constraining the solution; we must
have knowledge of the amplitude and spatial scale of
their errors. What is more, progress can only be made
if the error in the geoid model and the error in the
OT estimate reside at sufficiently different scales.
Fortunately there is reason to suppose that this will
be the case. On scales smaller than the height-height
correlation scale of the OT (set by the baroclinic
Rossby radius of deformation L, = O(100 km) for
the geostrophic eddy field, see for example Freeland
and Gould, 1976) the érror in the first guess, h(-), is
likely to be small because there is little structure in
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the OT at these scales. But it is precisely at such
small scales that most of the geoid error will be
concentrated because future gravimetric satellite mis-
sions will probably always be limited to determining
the global geoid on spatial scales of 100-200 km and
larger. On the other hand, one might expect the error
in a “first guess” provided by an ocean model to
reside predominantly at scales greater than the cor-
relation scale of the OT, where the geoid will be
much better known. Thus at large scales we can
envisage using the geodesy and altimetry to improve
the ocean model, while at smaller scales where the
altimetry and the ocean model are more reliable,
they can be used to improve the poorly known geoid.

Although the accuracies of local gravimetric geoids
are notoriously difficult to assess, it is questionable
whether such a scale separation presently exists. The
errors in the best available local gravimetric geoids
(e.g., the 5 GEM 8 northwest Atlantic geoid) probably
encroach rather far on oceanographically interesting
scales (see Cheney and Marsh, 1981). However, as
our knowledge of the geoid improves and the errors
are driven down to smaller and smaller scales, the
OT signal will become more and more into focus.
Our approach relies on there being some useful
information in the geoid, i.e., the blurring of the OT
by geoid errors is not too great. ,

Suppose, for example, that a gravimetric geoid of
the northwest Atlantic is in error by several meters
on a scale of several tens of kilometers over the
Puerto Rico trench where the geoid has much small-
scale variability. The difference between an altimetric
surface and the geoid estimate, the observation of the
OT, would thus contain a large geoid error. If this
were assimilated into an ocean model it seems rea-
sonable to suppose that the model would “realise”
that a geoid error of such an amplitude and scale is
unlikely to be a geostrophically balanced pressure
gradient and could thus be used to compensate for
it: there would be a systematic difference between the
model’s first guess h(—) and the observation zj;, and
this difference could be attributed to a geoid error.
In this way the ocean model may be used to help
correct the geoid. In effect the geoid is adjusted so
that the implied OT is consistent with the prior
dynamical statements of the model.

Viewing the geoid error as a bias in the OT
observations in this way, has close parallels with
current research in meteorological data analysis. For
example, Hollingsworth and Arpe (1981) map the
mean difference between the 500 mb height field
analysis and radiosonde observations and describe
how over northern Europe it reflects national bound-
aries. They suggest that this bias is introduced
by the inhomogeneity of radiosonde types over Eu-
rope. This is an interesting example of how a dynam-
ical model can be used to assess the quality of the
observing network, if the systematic errors in the
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model and the observations lie at different scales. In
the same way, a dynamical ocean model has the
potential of becoming an extremely useful tool in
discriminating between OT signals and the bias intro-
duced by geoid errors.

It should be clearly stated though, that there will
certainly be oceanic regions with strong variability
where there may be no such scale separation between
geoid errors and systematic model errors. For example,
the Gulif Stream flowing over the New England
Seamounts shows strong topographic control and so
here systematic model errors will almost certainly be
correlated with the topography and hence the geoid,
making any discrimination here between geoid errors
and model errors problematical.

The rather qualitative notions discussed here will
be made more quantitative in Section 4 where we
write down the minimum variance solution of Eq.
(2.8) (which weight the first guess and observation
with respect to their error covariances) and study
how its response as a function of scale is controlled
by the choice of error covariance matrices. A practical
demonstration of the approach will be given in Sec-
tion 6.

4. Minimum variance estimation
a. Weighting with respect to error covariances

Standard statistical methods are available for com-
bining independent measurements of a field. Here we
use minimum variance estimation which is useful if
we have information on, or are willing to make
assertions concerning, the error structure of the mea-
surements. There is an extensive bibliography on
linear estimation theory but in the present context
papers by Ghil et al. (1980), Jackson (1981) and
particularly Rodgers (1976) were found to be helpful.

Given two independent measurements of a vector
X, X; and x, where

X x+61

X, =X+ e

together with covariance information on their error

structure

S, = EXP(GmT); S, = EXP(fzézT)>

(where Exp is the expectation operator or the ensemble
average, and T is the transpose) the optimum estimate
in the sense of least-squares weights x; and x, inversely
with their error covariance matrices:

i = S(Sl"lxl + Sz—IXZ)
with error covariance

§=("'+8,7)"

4.1)
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Eq. (4.1) is a straightforward generalization to
vectors of the familiar combination of independent
measurements of a scalar. It has been derived on
numerous occasions and applied in many diverse
fields. In the combined problem of Section 2 there
are three pieces of information: altimeter measure-

‘ments z,, a geoid model h,(—) and an ocean model
h(-), Eqs. (2:2), (2.3) and (2.4) respectively. From
these we form:

two “measurements” of the geoid
the “first guess” hy(—)

with error covariance S,(—)

. ) . 4.2)
and the “observation” z, = z, — Ah(-)
with error covariance S, = AS,(—)AT + S,
and
two “measurements’ of the OT
the “first guess” h(—)
with error covariance S,(—) .(4.3)

~ and the “observation” z, = z, — Ahy(-)

with error covariance S,, = AS,(—)AT +S,,

In Eqgs. (4.2) and (4.3) it has been assumed that errors
in the altimetric observations are uncorrelated both
with errors in the geoid model and errors in the
ocean model.

So, by analogy with Eq. (4.1) the optimum estimates
can be written

he(+) = Sh (XS, (Dhe(-) + ATS, "'2,) )

which has error covariance

Si(+) = (S,7'(—) + ATS,,'A)!

and L. (4.4)

b(+) = 8,(+)(Sy™'(-)h(-) + ATS,, 'z,)

Sy(+) = (sh-l(_) + ATsz;.—lA)——1

Thus, given some prior knowledge of the ocean
circulation and geoid and their uncertainty, when the

altimeter measures the sea surface height (sum of

geoid and ocean topography), Eq. (4.4) gives a new
updated estimate of the OT and geoid, and a quan-
tification of the error in these estimates.

Although writing the best estimates in the form
Eq. (4.4) makes their relation to Eq. (4.1) explicit, it
involves the inversion of large n X »n matrices; and
s0 1S not suitable for practical implementation. How-
ever, it can be written in the computationally more
economical form (e.g., see Rodgers, 1976).
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(i) hy(+) = hy(—) + Kg[z; — Abg(-)]
with error covariance
(i) Sp(+) = (1 — KA)Sy(-)  (4.52)

where
(ii)) Ky = S, (-)AT[AS, (AT + 5, ]!

and likewise for the OT estimate

(i) h(+) = h(-) + K;[z, — Ah(-)]
with error covariance

(i) Su(+) = (1 - K,A)S,(-)
where

(iii) K, = S;(—)AT[ASK(-)AT + 8,1

Now, unlike Eq. (4.4), Eq. (4.5) only involves the
inversion of much smaller p X p matrices.

So, for example, Eq. (4.5a) relates analysed devia-
tions of the geoid from the “first guess™ to observed
deviations through a matrix of weighting coefficients
K, (sometimes called a Kalman-Bucy filter). The
procedure is straightforward to implement. The
weights to be given to each observation are computed
from (iii) of Eq. (4.5a) (the covariances contain the
information about the geometric configuration of the
observations) and the best estimate and its error
follow from (i) and (ii) of Eq. (4.5a).

Equation (4.5) is of the form in which mininum
variance estimation techniques are applied in mete-
orological applications to form the analysis, where it
is called “optimum interpolation™ or “objective anal-
ysis” (e.g., see the review by Bengtsson, 1975, or, in
an oceanographic context, Bretherton et al., 1976); it
is the “least-squares collocation” technique of physical
geodesy (e.g., see Moritz, 1978); it is the *“geophysical
inverse theory” introduced by Wunsch (1978) to
determine the ocean circulation from hydrographic
data and used by Wunsch and Gaposchkin (1980) to
combine geodetic, hydrographic and altimetric data.

The approach Eq. (4.5) is very powerful but it
relies on knowledge of the errors in the various fields
which are often poorly known. In practice the pro-
cedure is always suboptimum because there is no
detailed information on the error structures. Nev-
ertheless, it is always possible to put some error bars
on the measurements, and Eq. (4.5) provides the
framework through which we proceed.

. (4.5b)

b. Modeling of error covariances

The error covariances must be chosen with care
because, as discussed in Section 4d, they determine
the response of the analysis as a function of scale.
The covariances will always be imperfectly known
but in many applications this may not be severely
limiting, because the performance of the analysis is
not sensitive to their fine detail. There are a few
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simple guidelines which are worth bearing in mind
when choosing covariances.

First, it is important that the estimated covariance
should be a possible covariance, i.e., that it be positive
definite (no negative eigenvalues). If this is not so
then merely by a change of basis the rms error in the
transformed field can be made negative. Second, the
estimated covariance should be an approximation to
the true covariance, and it is reasonable to suppose
that the covariance of the errors in the field reflects
the covariance of the field itself. Third, we should
attempt to reconcile the desire for optimality with
that of simplicity in an acceptable way.

In the simulation study of Sections 5 and 6 we
only attempt to model the gross or essential features
of the probable error structure in a quasi-geostrophic
ocean model, geoid model and the observations.

1) OCEAN MODEL

The error in the estimate carried by the ocean
model, Eq. (3.1), will be smaller at observing times
(satellite passes) and in data-rich areas (near the
satellite tracks). Thus ideally the covariance $ should
be a function of space and time. In adopting the
formalism Eq. (4.5) it is assumed that the space and
time evolution of § can be modelled in a sufficiently
realistic way.

We write

Si = D'’CD'~,

where C is a time-independent correlation matrix
which carries the information on the spatial structure
of the errors in the estimate, and D is a time-
dependent diagonal variance matrix containing the
squares of the standard deviations of the estimate.
This is the conventional separation of the covariance
between time-dependence and space-dependence
commonly adopted in optimum interpolation.

In view of the close dynamical similarity between
the geostrophic eddy field in the atmosphere and
oceans it seems appropriate for synoptic mapping
purposes to adopt the form of the height-height
correlation function most commonly used in meteo-
rological applications—the Gaussian exponential
function:

(4.6)

where r;; is the distance between points 7, j and b an
empirically determined coefficient fixing the scale of
the height field errors. In (4.6) Cj; is supposedly
independent of time. Equation (4.6) says that the
correlation of the errors in h between points a distance
r apart decreases exponentially with separation, and
is negligible at separations much larger than 5. The
correlation scale b of the errors depends on the scale
of the features in h, and so for the geostrophic eddy
field b is set by the baroclinic Rossby radius of
deformation, L, = O (100 km).

— i/ B)2
C; = e \2ilb?,
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It is further supposed that the variance is constant
in space and time,
D = 0,2 4.7
Here no attempt is made to model the timie evolution
of the variances (in optimum interpolation. the vari-
ance is often assumed to vary linearly with time).
Equations (4.6) and (4.7) are our representation of
the error structure in h(—): they assume isotropy and
homogeneity respectively.

2) GEOID MODEL

To apply Eq. (4.5) a quantification of the errors in
existing geoid models is needed. To compute the

- geoid at one geographical position requires, in prin-

ciple, knowledge of the gravity field over the entire
surface of the earth. The error in the geoid will thus
depend on the quality, quantity and distribution of
the gravity measurements. The problem of construct-
ing such a gravimetric geoid and quantifying its errors
is discussed in, for example, Heiskanen and Moritz
(1967) and Zlotnicki et al. (1982).

For the present simulation study, however, we
adopt the simplest possible form for the error structure
and write

Si, = o, 4.8)

which assumes that the errors in the geoid model is
a white-noise process: uncorrelated with a constant
variance ¢, and similarly for the

3) ALTIMETER OBSERVATIONS
S, =0, 4.9)

No attempt will be made to justify the assumption
of uncorrelated constant variance geoid and obser-
vational errors, except to say that Eqs. (4.8) and (4.9)
are best regarded as “minimum of information”
statements. In Section 4d they will allow us to rewrite
Eq. (4.5) in a physically appealing form.

¢. Eigenvector decomposition of the Gaussian
correlation

" The form of the error structure in h(—) modeled
by Eq. (4.6) can be most readily understood by
finding the eigenvectors and eigenvalues of C, i.e., by
diagonalizing C (see Rodgers, 1976). Hollingsworth
(1984), in particular, has investigated the error struc-
ture implied by the Gaussian exponential correlation
in this way. QOur discussion follows closely that of
Hollingsworth.

As an example, Fig. 3 shows the eigenvalues and
eigenvectors of the correlation matrix Eq. (4.6) ap-
propriate to 11 equally spaced observations along a
satellite track a distance A apart, with a correlation
scale b = 3A. For clarity only the four gravest modes
(e,—e,) are shown. The gravest mode is the “mean,”
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FiG. 3. The normalized eigenvectors and eigenvalues of the
Gaussian exponential, Eq. (4.6), appropriate to 11 regularly spaced
altimeter observations a distance A apart along a satellite track,
with 'lz/A = 3. Only the four gravest eigenvectors, e,—e,, are shown

and > A = 11,

i=1

the next the “linear trend,” etc. down to grid-scale
waves at e;; (not shown). These eigenvectors form
statistically independent error patterns (they are
sometimes called the empirical orthogonal functions
of the covariance C): the estimate h(—) is uncertain
to the extent of adding on each eigenvector e; with a
random coeflicient of variance \;. As can be seen
from Fig. 3, the gravest modes are associated with
the largest eigenvalues. Thus, in this case, the total
varianee = Trace of C = 11, the number of obser-
vations, (because each observation has unit variance
and C is symmetric and positive definite) is explained
by the first few modes.

If there are p observations, there are p eigenvectors,
p eigenvalues and 2 X\; = p. As A/b — oo (widely
spaced observations with respect to b) then A\, — 1
and ¢, — (0- -+, I;, - -+ 0) the observations are
so widely spaced that they are independent of one
another and the error is equally distributed amongst
the eigenmodes. , ’

In the case of a radar altimeter, however, giving a
measurement every 10 km along its track, with a
height-height correlation scale &6 ~ 100 km, A/b
= 0.1 suggesting that the limit A/b — O (closely
spaced along-track observations with respect to b) is
of more interest. As A/b — 0, \; — p, Aixy — 0 and
e’ — (1, 1-- -1, )p~"2% scales smaller than & can
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be resolved, but almost all of the error is explained
by the gravest mode.

Thus, the information carried by C on the error
structure of h(—) is made transparent by a study of
its eigenvalues and eigenvectors. With linear, regularly
spaced observations and a Gaussian correlation, there
is a clear relationship between the size of the eigen-
value and the structure of its eigenvector. The eigen-
vector with the largest eigenvalue has the least struc-
ture and, as the size of the eigenvalue decreases, the
structure of the corresponding eigenvector becomes
more complex. With densely spaced observations
relative to b, almost all of the variance is explained
by the gravest modes. This ordering and weighting of
the variance with scale implied by the Gaussian
exponential is appropriate to our problem because
we expect less uncertainty in h(—) at scales much
smaller than the correlation scale of the OT, because
there is little structure in the OT at these scales. This
seems physically plausible since the OT is essentially
“rigid” over a correlation scale.

d. Eigenvector expansion

The choices of error covariances Egs. (4.6) to (4.9)
determine the response of our estimation procedure
Eq. (4.4) as a function of scale. This response will be
at its most understandable if the fields are transformed
so that their errors become uncorrelated. So we
specialize Eq. (4.4) to form an estimate along a track
(i.e. put A = 1) and project h(—) onto the e;s.

If ¢, has correlation C then ET¢, has correlation
ETCE = A where

0 A

is a diagonal matrix of eigenvalues of € (ordered in
descending A;) if

E=(el,...

is the matrix of orthogonal normalized eigenvectors
of C. Thus, E forms the natural basis in which to
expand hi™%(x):

l’itrack(i) — Ehl(i)}
Sy =o0,’A )’

> €, "'ep)

(4.10a)

where the primed variables are the coefficients of the
expansion of the fields in the basis E [remember the
eigenvalues of S, measure the error variance of each
coefficient in the expansion of h(—)]. The errors in
the primed basis are uncorrelated because A is diag-
onal.

Similarly, z, and h, can also be projected onto E
and, because of the assumption of uncorrelated errors
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in Egs. (4.8) and (4.9), the errors in the transformed
fields will remain uncorrelated under the orthogonal
transformation (E'E = I):

z, = Ez,,
} (4.10b)
S, = o2}
and ‘
hK(x) = Eh(+
e ) 3 )}. (4.10c)
S}, = ol

4

Substituting Eq. (4.10) into Eq. (4.5), the best
estimates can be written in the primed basis in the
very illuminating form:

) 70 + N,
hoi(+) = pry Ra(—) + 2+>\ zy  (4.11a)
2
s Y ' >‘i ’
hi(+) = y hi(—) + ey Zh  (4.11b)
where

o, 2 PAY
'Yoz = (*) 5 'Ygz = (J)

Om Om
measure the noise in, respectively, the observations
and the geoid model compared to the ocean model,
and

0 el P JE

Now, after projection onto the e; the errors in each
component are uncorrelated: each component i is
independent and can be estimated independently,
combining them as if they were scalars. Equation
(4.11) shows clearly how v, and v,* control the mix
of first-guess A(—) and observation z in the analysis
of the geoid and OT. If the altimeter is very poor
Yol ¥* — oo then we cannot distinguish the signal
from zero and the best estimate reverts back to our
prior estimate. The limit case in which geoid errors
dominate over mstrumental errors, however, is of
more interest, v,> < v, for then:

at large scales, \; > v,
hgi(+) =~ hgi(—)

(4.12a)
Hi(+) = 2y = hoi —

o=

and the altimeter and the geoid are used to update
the ocean model;

at small scales, \; < 7,°
hi(+) =~ hi(-)

(4.12b)
h'gi("‘) ~ Zg = hoi

- h}(—)}
and the ocean model is used in conjunction with the
altimetry to improve the geoid.

In Eq. (4.12) “small” and “large” here are measured
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relative to the scale exhibited by the eigenvector
corresponding to A; =~ v, and is thus a function of
the height-height correlation scale of the ocean signal
(which fixes E and A) and the relative accuracy of
the geoid model and the ocean model (which fixes
v¢2). So, for example, suppose there is equal uncer-
tainty in the geoid model and ocean model v,* = 1
then in Fig. 3 the three gravest eigenvectors, i = 1, 2
and 3, of z, will be associated with OT, whereas
modes { = 4 to 11 in z, will be associated with the
fine structure in the geoid. :

The eigenvector expansion is only valid under the
assumption of uncorrelated errors in z, and hg(—),
but is nevertheless useful because it makes the response
of the analysis transparent to errors at various scales
and demonstrates how they are controlled by the
€rror covariances.

The operation of the analysis is now very simple
to understand. To analyze for the geoid and OT
along a track using Eq. (4.11) we

i) form the difference fields z, and z,,

i1) expand in the eigenvectors of the covariance
matrix S,(—), and then

iii) all structure in z, corresponding to \; < v,°
(small scales) is associated with the geoid

iv) all structure in z, corresponding to \; > vz
(large scales) is associated with the OT.

It is instructive to note that in the case of perfect
altimetry, then from Eq. (4.4) with S,, = 0, our best
estimates of h and h, must add to give the true sea
surface height, i.e.,

h(+) + h(+) = h,
It then follows that
h(+) — z, = hy(—) — hy(+). (4.13)

Thus our scheme associates the difference, or bias,
between the best estimate of 4 and the observations
of h, with a systematic error in the geoid. The relation
(4.13) only requires that $., be zero and so, unlike
Eq. (4.11), is independent of particular statements
about S;,(—) and S;,(—).

In this section we have quantified our notions
regarding the separation of geoid errors from the
ocean signal, and set out the theoretical framework
in which it is proposed to tackle the combined
problem of OT determination and geoid improvement
from satellite altimetry. In the following sections a
practical illustration of the method is presented using
stimulated OTs and geoid errors.

5. Simulation study

Here we briefly describe an eddy resolving circu-
lation model of idealized time-dependent double gyres
which is used to provide a truth circulation h. This
is degraded by a systematic (unchanging) error e,
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representing uncertainty in a gravimetric geoid. We

then proceed to separate out ¢, from h using the

minimum variance estimation techniques developed
in Section 4. :

Our focus on Gulf Stream variability should be of
particular interest because the eddy field is associated
with pronounced sea surface tilts which have been
shown to be detectable in Seasat records. Random
errors in the altimeter instrument and systematic
long wavelength uncertainties in tides and satellite
orbits are probably not limiting here. Further, detailed
gravimetric geoids exist for the Western North Atlantic
whose errors do not appear to swamp the oceano-
graphic signal, suggesting that absolute velocity deter-
mination may be a possibility (e.g., see Cheney. and
Marsh, 1981). Since the geostrophic eddy field is
almost certainly a dynamical instability of the larger
scale flow, rather well described by the conservation
of potential vorticity on synoptic time-scales, powerful
dynamical statements can be made.

/

a. Ocean topography

The ocean model is a homogeneous layer of fluid
of depth H and density p confined to a basin of width
L on a f-plane and governed by the barotropic
vorticity equation. It is driven by an imposed wind-
stress curl forcing F, and frictionally retarded D:

a%v%p +Ji, V¥ + By) = F— D, 5.1
where J is the Jacobian, ¢ the streamfunction for the
horizontal flow, 8 the planetary vorticity gradient, ¢
the time, x is east, and y north.

The deviation of the sea surface from the gravi-
metric geoid is 4 = (f,/g)y where f, is the Coriolis
parameter and g the acceleration due to gravity. In
our simulation study Eq. (5.1) will be taken as a full
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and complete description of the time evolution of the
ocean topography.

A finite-difference version of Eq. (5.1) is leap-
frogged forward on a 33 X 65 grid from a known
initial state in a double gyre configuration (see Fig.
2a).

O<x<L}
—-L<y<lL)’
with

T . 7I'y

F oH sm( T )
(for an ocean in which 7, the wind-stress = 107! N
m?2p=10kg> g=2X10"s" H=5X10?
m and L = 10° m) to generate a reference six-month
sequence of “‘synoptic” maps of the Gulf Stream and
its recirculation. Figure 4 shows a series of height
fields, h at eight-day intervals. The internal jet sepa-
rating counter-rotating gyres is barotropically unstable
and meanders along the zero wind-stress curl line
occasionally forming cutoff rings. The rings have a
height signal of %2 meter and a horizontal scale of
200 km. Smaller amplitude, larger-scale westward
propagating Rossby basin modes are excited to the
north and south which disturb the Sverdrup interiors.
This is our “truth” circulation which will be sampled

to simulate an altimetric data set.

Our choice of model deserves comment. The baro-
tropic formulation Eq. (5.1) cannot, nor does it
attempt to reproduce the plethora of space and time-
scales that make up the oceanic variability. The
absence of stratification means that (u/8)"/> rather
than Lp, sets the scale of the geostrophic eddy field

" which, as a result, tends to be too intense, and rather

too broad in scale. For our present purposes, however,
the formulation has several advantages over more

L 0

M\

F1G. 4. A series of instantaneous OT. A(x, y, 1) (C.I. =

15 ¢m) at 8-day intervals showing the barotropically

unstable internal jet separating counter-rotating gyres.
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complex and perhaps realistic models. It has space
and time scales in common with the oceanic geo-
strophic eddy field, and indeed can reproduce much
of the complexity seen in the active upper layer of
multilayer quasi-geostrophic models (for a fuller de-
scription of the present model and its use in an eddy-
resolving mode, see Marshall 1984). Even more im-
portantly, the model has only as many degrees of
freedom as are consistent with altimetric data and so
is fully constrained by it. Finally the barotropic model
does not suffer from initialization problems and so
can be rather straightforwardly used as an analysis
tool to assimilate noisy data.

b. Geoid error

The amplitude of the error in a gravimetric geoid
as a function of scale is modeled by assuming that
the error spectrum is white from the smallest wave-
lengths resolvable by the numerical grid up to the
scale of the miniature basin, i.e., from 30 km to 1000
km. So ¢, is randomly chosen from a normal distri-
bution of zero mean and standard deviation o,

Exp(e,) = 0
2 } :

S)e = Exp(egegT) = g,

(5.2)
Figure 2b shows ¢, for the case o, = 30 cm. This is a
significant error giving slopes in excess of %2 meter in
100 kms, sufficient to completely swamp the ocean-
ographic signal. It should be compared, for example,
with the six-month mean “truth” circulation shown
in Fig. 2a, in which the OT drops down by about %
meter across the Gulf Stream front separating subpolar
and subtropical gyres. A model of correlated geoid
errors will be considered in (ii) of Section 6c¢.

¢. Sampling strategy

An altimeter can never resolve the richness of scale
shown in Fig. 2, and so the reference circulation and
reference geoid error is sampled to crudely simulate
the spatial and temporal coverage of a radar altimeter
in a seven-day repeat orbit at an altitude of 1000 km,
giving a track separation of 250 km (in midlatitudes).
A seven-day repeat is chosen because it is found to
be an optimum specification given the space and
time scales of the simulated variability. For simplicity
the satellite is constrained to pass over columns and
rows of the grid marked by the thick black lines in
Fig. 2a, sampling h and ¢, at each grid point along
its track. We form “observations” of the OT and
geoid thus:

u=Am+%~Mﬂq’ 53

2z, = Alh + ¢, — h(-)]
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where

h = h(x, y,t) the “truth” OT taken from the ocean
model

€, = €(x, y) the “truth” geoid error

&(—) a prior estimate of the geoid error and

h(—) a prior estimate of the OT.

Before proceeding it should be emphasized that Eq.
(5.3) does not attempt to model the instrumental and
tracking errors of an altimetric system. This choice is
made recognising that it is the uncertainty in the
geoid, rather than the precision of the altimetric
system, which will ultimately limit the impact of
altimetry in ocean circulation studies. However, the
neglect of systematic orbital uncertainties in our error
analysis is certainly a gross over-simplification. The
orbit error can be regionally and temporally correlated
due to gravity model errors and the idiosyncrasies of
the tracking data collection campaigns—see Anderle
and Hoskins, 1977. The character of this error is
difficult to quantify but it will probably be on the
order of a few thousand kilometers and greater, and
so should not compromise the use of altimeter data
for mapping on geostrophic eddy scales. A

In the next section best estimates, h(+) and h,(+)
are computed from z, and z, using versions of Eq.
(4.5).

6. Minimum variance solutions

. We now present minimum variance solutions for
h,(+) and h(+), using various specifications of h(—).
Our purpose here is to demonstrate how dynamical
information in a first guess h(—) can be used to
constrain our estimates helping to discriminate be-
tween geoid errors and the OT. In each calculation
the same a priori covariance information, i.e., S,
S,, and S,,, is used but the dynamical content of
h(—) is changed to study its impact on the analysis.
The success of our procedure can be quantified by
computing the rms error between the estimates and
the truth fields.

a. Computational details

The height-height correlation scale appropriate to
the OT signal is found by fitting the Gaussian Eq.
(4.6) to the correlation function computed from the
model fields by adjusting b: b = 100 km is found to
be appropriate. This is consistent dynamically with
(u/B)'"? which determines the scale of the features in
Fig. 4. With simulated data every 32 km along the
track b/A = 3, the ratio used to calculate the eigen-
vector decomposition of the correlation matrix C
shown in Fig. 3. The analysis is sensitive to the
assumed value of b, but the eigenvector expansion
Eq. (4.11) makes this dependence understandable by
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showing explicitly how the correlation scale determines
the spectral response of the analysis. In the calculations
that follow, therefore, our chosen value of 100 km,
close 10 an optimum specification, is kept fixed.
Rather than update the whole vector field simul-
taneously it is more convenient to estimate it sepa-
rately at each interpolation point: Eq. (4.5) is spe-
cialized to analyse for a, point rather than a vector.
Precise details are not of interest except to say that
the size and number of matrix inversions can be
reduced by exploiting the symmetry of the satellite
tracks and sensibly using correlation scale information.
The correlation is the most natural way of setting the
scale over which observations can be allowed to
influence the estimate, and thus it can be used to
limit the size of the matrices to be inverted. In
computing the best estimate at a point, more distant
observations have less influence than adjacent obser-
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vations. It is found convenient to aliow only those
observations within a circle of radius 35/2 to influence
the analysis at the origin of the circle. This means
that along track observations can be used to update
the OT in a swath 3b, or 300 kms wide centred on
each track. Typically 11 observations are combined
to estimate for points along the tracks, and somewhat
fewer observations for off-track points. Since the
geometrical configuration of the observations remains
fixed and no attempt is made to model the time
evolution of the covariances, the weights need only
be computed once. Finally, it should be noted that
because the geoid errors are assumed to be uncorre-
lated (i.e. the correlation scale for h, is zero, Eq.
(5.2)) then it is only possible to estimate for the geoid
along the track: the a priori assumption Eq. (5.2),
irrespective of the true form of the geoid error,
precludes an estimate of the geoid between the tracks.

FIG. 5. (a) The truth six-month time-mean OT. (b) The h(+) of the mean OT obtained by setting the first
guess fields h(—) = &(—) = 0 (the rms error with respect to the truth field is 12 cm). C.I. = 6 cms.
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b. Zero “first guess” information

The first guess fields, h(—) and €.(—) are set to zero
[thus decoupling (4.5a) and (4.5b)], and the observa-
tions Eq. (5.3)

7, =17, = A(h + ¢,)

averaged over the six-month period of the altimetric
record. The minimum variance solutions are com-
puted from Eq. (4.5) supposing that there is equal
uncertainty in the (zero) geoid and OT “first guess”
fields. i.e., v,° = L.
_ Figure 5b shows the minimum variance solution
h(+). A two-gyre structure is evident, although severely
distorted by geoid errors. The rms error with respect
to the truth circulation (Fig. 5a) is 12 cm. Evidently
geoid errors along the tracks are smeared out over a
correlation scale in the analysis resulting in significant
height field errors. In our analysis with 4 = 100 kms,
b/A = 3, and 7g2 = 1 the scale separation between
geoid errors and OT occurs at about 250 kms, the
wavelength exhibited by the ¢; with \; ~ 1 (3 and ¢,
in Fig. 3). This scale is evident in Fig. 6 which plots
the true geoid error ¢, and the residual error ¢, — ¢,
along a selected track. Our estimates associate this
residual with OT, which consequently suffers from
errors as large as 20 cm on scales of 200-300 km.
Although v, determines the cut-off above which
structure in z, is attributed to OT, the analysis is not
overly sensitive to v,%. The elgenvalues of C fall so
rapidly towards zero (see Fig. 3) that ‘yg would have
to be very small (great certainty in h(—) relative to
g( )) if the OT analysis were to draw closely to z,
at small scales.

¢. Assimilation into ocean models

A priori oceanographic information of a statistical
nature was brought to bear in the analysis presented
in Section 6b through the correlation scale . But this
is an understatement of our prior knowledge because
the simulated data was generated by sampling a series
of synoptic maps whose dynamics is governed by Eq.

60

30
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GEOID ERROR (cm)
o
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FIG. 6. The truth (uncorrelated) geoid error ¢, and the difference
field ¢, — ¢ (plotted along a selected track) obtained by setting
h(— ) = &(—) = 0, as in Fig. 5(b).
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(5.1). It would be sensible, therefore, to use Eq. (5.1)
to assimilate the observations and thus aid in the
analysis of the data.

The following continuous updating strategy is em-
ployed:

1) starting from initial estimates of the ocean
circulation and geoid error h(— ) and hg( ), the ocean
model is integrated forward in -time providing an
estimate of the state of the ocean h(—) which is
imperfect because of imperfections in the initial con-
ditions and model physics.

2) when altimeter observations of the sea-surface
height become available they are combined with
h(-=) (current state of the ocean model) and hg( )
(current estimate of the geoid) to form the observations
z, and z,

3) from these observations the best estimates of
the geoid and the OT, h (+) and h(+) are computed
from Eq. (4.5), using as a priori constraint information

hy(—) and h(-).

4) the ocean model is integrated on from h(+) to

the next observation time.

It should be noted that rather than apply Eq. (4.5)
once to averaged observations as in Section 6b, it is
applied successively as new observations become
available. So, between observation times h, remains
unchanged whilst h evolves according to Eq. (5.1).
At observation times a new estimate of the geoid
error and OT is made. Hopefully the iterative pro-
cedure will converge so that as time progresses, better
and better estimates can be made because the a priori
statements Eq. (2.3) and (2.4) contain more and
more useful information.

1) THE COMBINED PROBLEM

Figure 7 shows the rms error in the geoid and OT
estimates plotted as a function of the number of
satellite passes obtained as described above by assim-
ilating the observations into the ocean model. The
procedure is started by setting the initial geoid and
OT estimates to zero. The rms error in these initial
estimates is 30 cm for the geoid and 27 cm for OT.
As before v,” is set to unity.

The errors have fallen dramatically after the first
7-day pass. This is almost entirely due to covariance
information which immediately associates [Eq. (4.12)]
the smallest spatial scales in the observations with
geoid errors and large spatial scales with OT. From
then on the ocean model provides a “first guess”
which contains more and more information about:
the OT based on the dynamical content of the ocean
model, its memory for past observations and the
improving geoid. This slowly but surely pulls the
errors down until after twenty 7-day passes they have
been reduced to only 6 cm. Extended integrations
beyond six months do not lead to further error
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FiG. 7. The rms error in the OT and geoid estimates (for the
case of uncorrelated geoid errors) plotted as a function of time,
obtained by continuous assimilation of data into a perfect ocean
model, and solving simultaneously for the OT and geoid error.
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reductions. This lower limit on the achievable errors
is a function of the amplitude and scale content of
the geoid errors, and the spatial density and temporal
frequency of the observations.

Figure 8a shows the six month mean OT estimate
and should be compared to the truth circulation, Fig.
5a. It has a rms error of only 4.1 cm.

A sequence of geoid error estimates along the track
selected in Fig. 6 is shown in Fig. 9. Small spatial
scales in the geoid error are again quickly corrected
for, but after twenty passes the errors have been
greatly reduced and lie only at large scales. This
residual error, at scales in common with the time-
mean ocean circulation, cannot be separated from it.
It should be noted that the driving of the geoid error
to large scales implies that although initially spatially
uncorrelated, the geoid errors soon become correlated
as the integration proceeds, i.e., the correlation matrix

FiG. 8. “Best estimates” (+) of the mean OT obtained as in Fig. 7 through assimilation of data into a
perfect ocean model and (a) continuously updating the OT and geoid estimates (rms error = 4.1 c¢m) and
(b) updating the OT estimate but setting é(+) = &(—) = 0 (rms error = 8.4 cm). C.I. = 6 cm.
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FIG. 9. The truth (uncorrelated) geoid error ¢, (plotted as in Fig.
6) and the difference fields e, — &, €, — &gq Where &, &g, are the
geoid estimates after the first and twentieth pass of the satellite
respectively.

of the geoid errors becomes less and less diagonal.
Although the minimum variance estimators allow
one to calculate the new correlation in terms of the
old, (ii) of Eq. (4.5a), no attempt has been made to
incorporate this level of sophistication into the anal-
ysis. It is probable that the magnitude of the errors
can be reduced further if, in the analysis, due account
is taken of the change in the correlation scale of the
geoid errors as the iteration proceeds i.e. by modeling
the evolution of the geoid error covariance matrix
using (ii) of Eq. (4.5).

The OT estimate obtained by assimilating the
observations into the ocean model, but setting h,(+)
= 0, Fig. 8b, demonstrates the efficacy of solving
 simultaneously for the geoid and OT. The same a

priori oceanographic information is exploited as be-
fore, but this time no use is made of it to correct for
the geoid. A comparison with Fig. 8a shows that the
quality of the analysis is much reduced (the rms error
is 84 cms). It has many small-scale features in
common with Fig. 5b which are associated with geoid
errors.

2) CORRELATED GEOID ERRORS

The random uncorrelated geoid error described in
Section 5b is perhaps an unrealistic representation of
geoid error structure and, moreover, a rather straight-
forward one to correct for. By merely averaging
observations separated by a distance A over a wave-
lev__ngth I, random errors can be reduced by a factor

N, where N = [/A is the number of independent
observations. So, if / = 300 km and A = 30 km,
averaging over 10 observations could reduce the error
by a factor of V10 (it is this spatial averaging of
uncorrelated errors which accounts for the initial
rapid fall of the errors in Fig. 7).

If more realistically, the geoid errors are correlated
over oceanographically interesting scales k™! ~ b,
where k is the wavenumber, they will be correspond-
ingly more difficult to separate out from the OT. For
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example, Fig. 10b shows a geoid error field generated
using

€(x, »)
20 27 27
- in( % inf =< 1
> Qmn sm(n n x+ 0,,,,,) sm(mA y+ ¢,,,,,) 6.1)

nm=2

where 0,,, and ¢,,, aré randomly chosen phases in
the range from —= to = and a,,, are randomly chosen
amplitude coefficients scaled so that the total rms
error in the field is 30 cm. Thus the geoid error is of
the same magnitude as in Fig. 2b but now correlated
on scales up to 600 km.

Figure 11 shows the rms error as a function of the
number of satellite passes for this correlated error.
Although the initial geoid error covariance is not
diagonal, the statistical weights are computed assum-
ing that it is, Eq. (4.8). The rate of decrease of the
errors with time is less rapid than for correlated errors
(cf. Fig. 7) because now, as can be seen from Fig.
10b, there is large power in the geoid error at longer
wavelengths. Covariance information has relatively
less impact in the initial stages of the assimilation
and, subsequently, the first guess information provided
by the ocean model plays a relatively larger role in
reducing the errors. The mean OT estimate, Fig. 10a,
is somewhat distorted by residual geoid errors, but it
has a rms error of only 6.6 cm. After twenty passes
this residual error, plotted along our selected track in
Fig. 12, lies at wavelengths as large as 500 km.

3) DEGRADED OCEAN MODEL

In Section 6¢ 1) and 2) the model which generated
the data is used to assimilate it, and so there is danger
of obtaining over-optimistic results because a perfect
model overstates any realistic expectation of dynam-
ical knowledge. Figure 13, therefore, presents two OT
analyses formed by assimilating data into degraded
models. In Fig. 13a (rms error 10.2 ¢cm) the wind-
stress curl forcing F has been removed from the
model and, in Fig. 13b (rms error 9.2 cm), the
nonlinear terms have been suppressed. These are
both very severe degradations of the model, and
indeed the quality of the analyses are much reduced.

Consistent with the absence of external forcing the
analysis Fig. 13a is markedly in error in the forced
Sverdrup interiors, whereas the nonlinear boundary
currents and the inertial recirculation are somewhat
better represented. With a linear forced model, on
the other hand, Fig. 13b, the boundary currents and
jets are poorly represented, for now they are controlled
by frictional rather than inertial effects. As a conse-
quence, they are too narrow ((11/8)"/? which sets the
scale of the boundary currents in Fig. 2a is absent in
Fig. 13b).
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FiG. 10. (a) The A(+) of the mean OT obtained by assimilation into a perfect model but this time with
the correlated geoid error shown in Fig. 10(b) (rms error = 6.6 cm, C.I. = 6 cm). (b) A simulated geoid error
correlated on scales up to 600 kms with a standard deviation of 30 cms, computed using Eq. (6.1). C.L

= 15 cms.

Despite the rather crude dynamical information
contained in the first guess, Fig. 13 still represents an
improvement over Fig. 5b which used no first guess
information.

7. Concluding remarks

Satellite altimetry offers the prospect of global
coverage of surface geostrophic currents on synoptic
time-scales, and as such could play a central role in
future oceanographic observing campaigns. Perhaps
the only way of making sense of this information
and blending it in a dynamically consistent way with
other data types, is by assimilation into dynamical
ocean models in much the same way as meteorologists
form their analyses. However, as soon as such a
procedure is considered for altimetric data, one is
faced with the prospect of dealing with large systematic

errors introduced by the uncertainty in the geoid,
which severely distorts the OT signal. Our philosophy
here has been to bring to bear dynamical information
about the OT, concisely stated in an ocean model to
help separate the OT signal from the geoid.

This combined problem has been formulated gen-
erally, making the use of a priori information explicit
and stressing that it is a necessary and integral part
of the analysis. The tried and tested method of
minimum variance estimation has been used to op-
timally combine this prior knowledge with the obser-
vations to form best estimates. The application of the
minimum variance technique itself is relatively
straightforward: the major difficulty arises from the
uncertainty in the error covariances.. The most pressing
need is for a quantification of errors both in geoid
models and (if they are going to be used to assimilate
altimetric data) ocean models.
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FIG. 11. The rms error in the OT and the geoid estimate (for
the case of correlated geoid errors) plotted as a function of time

obtained, as in Fig. 7, by continuous assimilation into a perfect
ocean model.

In our simulation study these difficulties are some-
what ameliorated because there is a degree of control
over the error structures and the model physics. In
this preliminary study though we make no apology
for using simulated instead of real data, and rather
idealized error models. No attempt has been made
to make definitive recommendations concerning the
optimum specification of (for example) the ground-
track or repeat-time strategies for synoptic mapping.
Rather we have tried to set out the central difficulties
as clearly as possible and indicate a sensible strategy
with which to tackle them. Further simulation studies
using more realistic error models certainly need to
be carried out, but it is hoped that the numerical
examples presented here provide a practical demon-
stration of how dynamical information contained in
a first guess can be used to discriminate between
geoid errors and OT, with a finesse which depends
on the scale separation between the OT and the geoid
error, and the dynamical content of the “first guess.”

The success of our least-squares technique requires
that the blurring of the OT by geoid errors should
not be too severe, i.e., the geoid must have some
information content in it. This is not surprising for
it is difficult to see how any technique can be used
to identify errors in a geoid model which reside at
scales in common with the OT. If there is no scale
separation between the OT and the geoid error, then
we must await detailed geoid models for which there
is. Then, expressed in its most optimistic form, we
can envisage using altimetry in conjunction with a
geoid model to update an ocean model with the
height-field on large scales (~ few hundred km up
to basin scale) whereas on small scales altimetry can
be used in conjunction with the ocean model to fill
in the fine structure of the geoid. This objective,
though, can only be realized given the much improved
geoid made possible by a dedicated gravity satellite
mission such as the GRM. For the immediate future

JOHN C. MARSHALL

347

we must proceed in stages investigating regional prob-
lems, using local geoids and ocean models tailored to
the prevailing local dynamics.

Given the problem at hand, the most appropriate
form of dynamical representation must be investi-
gated. For example, although a quasi-geostrophic
ocean model might be appropriate for assimilating
height-field information in midlatitudes, it would be
a most inappropriate choice in the tropics since it
cannot describe the gravity wave response which is
an important component of the signal in equatorial
oceans. (Some general considerations on the assimi-
lation of data into equatorial ocean models can be
found in Gill et al., 1984). In certain circumstances
a much more schematic representation of the dynam-
ics may be acceptable. For example, a few Rossby
normal modes may be adequate to capture much of
the power in the geostrophic eddy field described by
MODE (Mid-Ocean Dynamics Experiment—see
Simmons et al., 1977). Here one could project fields
directly on to these modes and optimally estimate
for their coefficients: we use a basis chosen on dynam-
ical rather than statistical grounds.

It is sensible to commence such data assimilation
studies using, as here, simple models with only as
many degrees of freedom as are consistent with the
data. But if surface information is to be extrapolated
downwards the extent to which baroclinic models are
constrained by height-field information alone needs
to be investigated. One suspects that, since the pressure
field is specified at the surface where velocities are
the largest, the flow would be rather strongly con-
strained. Furthermore, on those space and time scales
for which the oceanic response is first baroclinic
mode, we might expect the thermocline depth to be
correlated with the surface elevation. But detailed
study using models with vertical resolution is required
in order to quantify the confidence that can be placed
in a given model. ’

Finally, it should be mentioned that in this paper
attention has been focussed exclusively on absolute
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FI1G. 12. The truth (correlated) geoid error ¢, plotted along a
selected track, and the difference fields e, — €, & — €go.



348

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 15

WL AT /7

FIG. 13. The h(+) formed by continuous assimilation as in Fig. 8a (for the case of uncorrelated geoid
errors) but using degraded models with (a) no wind-stress curl forcing (rms error = 10.2 cm) and (b) no

nonlinear terms (rms error = 9.2 cm). C.I. = 6 cm.

velocity determination from altimetry. However, if
one is only interested in the time-varying circulation,
then a study of the difference of repeated passes
suffices. On subtraction the geoid vanishes, greatly
simplifying the analysis. Dynamical ocean models
may have only limited application in the interpretation
of height field differences, though, because ocean
models integrate forward in terms of absolute velocity,
i.e., surface elevation relative to the geoid. In many
oceanographically interesting regions such as boundary
currents and jets, the mean flow is strong and greatly
distorts the planetary vorticity contours. Here the
time-varying signal is embedded in and controlled by
a mean potential vorticity field which departs mark-
edly, but in an unknown way, from the planetary
vorticity contours (latitude circles). Nevertheless, it
must be said that in much of the ocean the mean
flow is weak, and so a mean sea surface constructed

from altimetric data alone is a rather good geoid
which can be used as a reference to objectively map
the variability using the least-squares technique out-
lined here.
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