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Abstract Motivated by the mid-latitude atmospheric

circulation, we develop a system that uses observations

from a differentially heated rotating annulus experiment to

constrain a numerical simulation in real-time. The coupled

physical-numerical system provides a tool to rapidly pro-

totype new methods for state and parameter estimation, and

facilitates the study of prediction, predictability, and

transport of geophysical fluids where observations or

numerical simulations would not independently suffice. A

computer vision system is used to extract measurements

from the physical simulation, which constrain the model-

state of the MIT general circulation model in a hybrid data

assimilation approach. Using a combination of parallelism,

domain decomposition and an efficient scheme to select

ensembles of model-states, we show that estimates that

effectively track the fluid-state can be produced. To the

best of our knowledge, this is the first realtime coupled

system for this laboratory analog of planetary circulation.

1 Introduction

In the differentially heated rotating annulus experiment, a

rotating annulus with a cold center (core) and warm

periphery develops a circulation that is dynamically similar

to the mid-latitude circulation of the atmosphere (see

Fig. 1). It is a robust and easily conducted laboratory

experiment, which has been used to study a variety of

properties of geophysical fluids including geostrophic tur-

bulence (Morita and Uryu 1989), convection (Hide 1958),

baroclinic instability (von Larcher and Egbers 2005; Taj-

ima and Nakamura 2003; Read 2003), and chaos (Read

et al. 1992; Lee 1993). It has also been used as a test-bed

for evaluating the utility of numerical models (Read et al.

2000; Geisler et al. 1983).

In this paper, we present a realtime observatory for the

differentially heated rotating annulus experiment (see

Fig. 2). The observatory is defined as a coupled physical-

numerical system with sensors to take measurements of the

evolving physical process, a numerical model for forecast-

ing it, and algorithms that couple the model with observa-

tions. We envision the coupling to be two-way; observations

constrain the model, and the model guides where and when

to take measurements. In this way, the observatory produces

an evolving state estimate in realtime that is closer to the

laboratory flow than either observations and model alone.

A realtime observatory opens up a number of funda-

mentally exciting possibilities for experiments in geo-

physical fluids. The constrained numerical model can be

used to study properties of fluids that are not directly

measured (surface height, pressure fields, vertical veloci-

ties, radial heat transport, etc.), and can permit volumetric

visualization of flows at a much higher resolution than

observations. Further, because data gathering cannot be

arbitrarily dense and realtime, the coupled system provides

an alternative when few measurements gathered in realtime

can effectively constrain the model. Optimally deciding

when and where to observe requires, in general, guidance

from the model, and thus the model must be integrated and

constrained in realtime too. When realtime performance is

achieved in observation, simulation and estimation, we

may have a new way to experiment with fluids in many

different dynamical regimes.
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Of particular interest to us is the use of the observatory

to accelerate research in prediction and predictability of the

large-scale atmosphere. Topics such as state and parameter

estimation, model error and adaptive sampling particularly

benefit, but so do others. For example, we may quantify

long term performance of models better by studying azi-

muthally integrated quantities over prolonged periods of

time under a variety of temperature differentials.

It is not possible in this paper to explore each and every

application. A large number of potential applications,

however, will require the numerical system to track the

fluid’s state in real-time as the first step. Our focus in this

paper, therefore, is on the design of the observatory for the

differentially heated rotating annulus experiment, including

a procedure to estimate model-states in real-time.

The tracking problem studied here is, to be sure, of

direct importance to numerical weather prediction (NWP).

In NWP, predictions are typically made using general

circulation models (GCMs), which implement the discret-

ized governing equations. GCMs typically have uncertain

parameters and crude parametrizations, uncertain initial

and boundary conditions, and their numerical schemes are

approximate. Thus, not only will the error between physi-

cal truth and simulation evolve in a complex manner, but

the probability density function (PDF) of the evolving

model state’s uncertainty is unlikely to retain the true state

within it (Lorenz 1963). A way forward is to constrain the

model with observations of the physical system (Wunsch

1996).

Studying the tracking problem in the laboratory is

convenient because repeatable experiments with real data

can be performed using far simpler logistics than the

operational setting. It is also useful because key challenges

in the large-scale tracking problem are also addressed in

the laboratory. They include nonlinearity of the process,

dimensionality of the numerical model, uncertainty of

states and parameters, and realtime performance. Solutions

found in a laboratory setting can not only accelerate

operational acceptance of new methods, but also inform

many other coupled numerical-physical experiments.

In a geophysical context, the rotating annulus experi-

ment has already been used to explore the utility of

numerical models. Read et al. (2000) use measurements

from the annulus and numerical models based on Eulerian

Fig. 2 The observatory and its components are schematically shown

in plan (top) and elevation (bottom) views. The physical component

consists of a rotating table on which a tank, camera and illumination

control system are mounted. The computational part consists of a

measurement system for velocimetry (OS), a numerical model, and an

assimilation system (DA), as described more fully in the text

Fig. 1 Image a shows the 500 hPa heights for 11/27/06:1800Z over

the northern hemisphere centered at the north pole. Winds flow along

the pressure contours. Image b shows a tracer (dye) in a laboratory

analog. The tank is spinning and the camera is in the rotating frame.

Tracer droplets initially inserted at the periphery (red dye, warm

region) and around the central chilled can (green dye, cold region)

has evolved to form this pattern. The laboratory analog and the

planetary system are dynamically akin to one-another. We study the

state-estimation problem for planetary flows using the laboratory

analog
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schemes to report that such models can simulate baroclinic

instability reasonably well, but this does not necessarily

imply predictive skill. In more recent work (Read 2003),

numerical studies are combined with laboratory experi-

ments in the study of heat transport. Effort has also been

afoot to study prediction and predictability problems using

the laboratory setting (Young and Read 2006; Ravela et al.

2003, 2007). To the best of our knowledge, however, this is

the first coupled system for the differentially heated rotat-

ing annulus to operate in realtime (Ravela et al. 2007).

Our coupled system continually observes the experiment

and uses a hybrid estimation method to constrain the model-

states of the numerical model. It is implemented using off-

the-shelf hardware and commercially or publicly available

software. Although it can operate in many dynamical

regimes, in experiments presented here a realtime cycle of

forecast-observe-estimate must be and is completed within

roughly 10 s. The system is now in routine use.

2 The observatory

The observatory, illustrated in Fig. 2, has a physical and

computational component. The physical component con-

sists of a perspex annulus, of inner radius 8 cm and outer

radius of 23 cm, filled with 15 cm of water and situated

rigidly on a rotating table. A robotic arm by its side moves

a mirror up and down to position a horizontal sheet of laser

light at any depth of the fluid using a periscope arrange-

ment. The light sheet is produced by a continuous wave

1 W 532 nm laser equipped with readily available line-

generator optics. It is *0.5 mm thick between entry and

exit in the annulus, and dead level. Fluorescent pliolite

particles (Dantec Dynamics, sg 1.03 g/cc, 50 lm) are

homogenized in saline water of equal density and scatter

incident laser illumination. Particles appear as a plane of

textured dots in the 12-bit quantized, 1 K 9 1 K images

(see Fig. 4) of an Imperx camera. These images are

transferred out of the rotating frame using a Hitachi fiber-

optic rotary joint (FORJ).

The actual configuration of these elements is shown in a

photograph of our rig in Fig. 3. The observation rig is

carefully mounted and tested for vibrations. To appreciate

the importance, consider particles that can move at up to

2 cm/s. The camera with scale factor 0.5 mm/pixel

(approx.) is positioned 50 cm away from the annulus. At a

sampling rate of 1/4 s, the camera must shake by less than

0.1� from the horizontal to have less than 10% motion

noise. We center the rig and hold the FORJ-assembly using

four bungee chords, which have the appropriate stiffness

(see Fig. 3) to damp vibrations and moments. The mea-

sured motion noise is *0.5 pixels, which implies that the

camera shake can be no more than 0.03�.

The computational aspects of the observatory are also

shown in Fig. 2. A server acquires particle images and

computes velocity using PIV on two processors (Fig. 2,

labeled OS). Velocity vectors are passed to an assimilation

program (Fig. 2, labeled DA) that combines them with

model forecasts to estimate new states. These estimates

become new initial conditions for the models. Estimates of

states and their uncertainties will also be used in the future

to target observations adaptively (T, dotted line). Here, we

go on to discuss individual components of the current

system.

2.1 Laboratory experiment and visual observation

We homogenize the fluid with neutrally buoyant particles

and spin up the rotating platform at the desired period

(between 3 and 12 s). After 20 min or so, the fluid comes

into solid body rotation. The inner core is then cooled using

a chiller (see Fig. 4). Within minutes, the water near the

core cools and becomes dense. It sinks to the bottom to be

replenished by warm waters from the periphery of the

annulus, thus setting up a circulation. At high enough

rotation rates eddies form (see Fig. 1) and baroclinic

instability sets in.

Once cooling commences, we turn off the lights and turn

on the continuous wave 1 W 532 nm laser, which emits a

horizontal sheet of light that doubles back through a peri-

scope to illuminate a sheet of the fluid volume (see Fig. 4).

An imaging system in the rotating frame observes the

developing flow using a camera looking down at the

annulus. We measure the horizontal component of velocity

from particle motion in image pairs, acquired 125–250 ms

apart using LaVision’s DaVis PIV software. Horizontal

velocity is computed in 32 9 32 windows with a 50%

Fig. 3 The apparatus, depicted using symbols defined in Fig. 2. The

fiber optic rotary joint (FORJ) allows image data to leave the rotating

frame and is held stably by orange bungee chords. The square tank

mitigates refractive effects at the annulus interface. It is insulated at

the bottom by a thick black rubber pad
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overlap between windows. It takes one second to acquire

and compute PIV of a single 1 K 9 1 K image pair by

distributing the computation across two 2.8 GHz proces-

sors. An example is shown in Fig. 6.

Observations are gathered at several levels on a

repeating cycle. The mirror moves to a preset level, the

system captures images, horizontal velocity is computed,

and the mirror moves to the next programmed level and so

on, scanning the fluid volume in levels. We typically

measure the fluid velocity at five different levels. Thus,

measurements of the whole fluid are available every 5 s to

constrain the numerical model.

We also gather temperature measurements in a separate

experiment to establish a climatological temperature

boundary condition. Five temperature probes (RTDs) are

distributed evenly along a vertical line spanning the fluid

depth on the inner boundary. Temperature is recorded for a

few minutes of circulation. This process is repeated mul-

tiple times at different randomly chosen azimuthal place-

ments of the vertical line on the inner boundary.

Climatology is then obtained by averaging all measure-

ments at corresponding observed depths, and interpolating

to all model levels (see Fig. 5). Measurements are similarly

gathered on the outer boundary, but all outer-wall tem-

perature measurements are averaged to represent the outer

boundary condition.

3 Numerical model

We use the MIT GCM developed by Marshall et al (1997a,

b) to numerically simulate the laboratory experiment. The

MIT-GCM is freely available software and can be config-

ured for a wide variety of simulations of atmosphere, ocean

or laboratory flows. Here, the model is used to solve the

equations that govern the evolution of an incompressible

Boussinesq fluid in hydrostatic balance. The governing

equations are:

ov~h

ot
¼ Gvh

� 1

q0

rhp horizontal momentum ð1Þ

rhv~h þ
ow

oz
¼ 0 continuity ð2Þ

op

oz
þ gq ¼ 0 hydrostatic balance ð3Þ

oh
ot
¼ Gh thermodynamic ð4Þ

Here, the three-dimensional velocity is denoted by v~¼
½v~h; w� where v~h is the horizontal velocity, w is the vertical

velocity and rh is the horizontal gradient operator, p is the

pressure, assumed to be in hydrostatic balance with the mass

field, g is the acceleration due to gravity, q = q(h) is the

density with q0 a constant reference value and h is the tem-

perature. The term Gvh
in the horizontal momentum equation

includes inertial, Coriolis and frictional terms; Gh is the

corresponding term in the thermodynamic equation and

includes advection and thermal diffusion. Explicit forms of

the G’s are discussed in detail in Marshall et al. (1997a, b).

No-slip boundary conditions are assumed on all solid

boundaries and a linearized free surface is adopted (Mar-

shall et al. 1997a, 1997b). The temperature at the outer

wall of the tank is held constant; at the inner core, it is set

to a vertical profile taken from a separate experiment (see

Fig. 5b). The bottom boundary is assumed to be thermally-

insulating.

Finite difference forms of the above equations are

solved in cylindrical coordinates, the natural geometry

for representing flow in an annulus. In the experiments

reported here, the domain is divided into 23 bins in radius

Fig. 4 The camera’s view of a horizontal plane of the fluid in laser light (left). The chiller can be seen in the center. A magnified view of the

upper-left quadrant shows embedded particles (right), which are used for PIV
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(0.65 cm/bin) and 120 bins in azimuth (3� bins). The vertical

coordinate is discretized using 15 levels non-uniformly dis-

tributed over the 15 cm depth of the fluid, as shown in Fig. 5b.

The MIT-GCM discretizes variables on an Arakawa C-grid

(Arakawa and Lamb 1977). Momentum equations are time-

stepped using a second-order Adams Bashforth technique and,

in the calculations presented here, h is advected with an

upwind-biased direct space-time technique using a Sweby

flux-limiter (Sweby 1984). The treatment of vertical transport

is implicit. A 2D equation for the surface pressure field is

solved at each timestep using a conjugate gradient method

ensuring that the flow remains non-divergent.

We initialize the model with a uniform temperature field

to which a small random component is added to initiate

hydrodynamical instability. A 2-d horizontal slice is shown

in Fig. 5c. The model performs in better than realtime. On

one processor of an Altix350, we can produce a single 10-

second model simulation within 8 s. The use of non-uni-

form discretization of the domain using variable vertical

levels enables economies to be made in model resolution

without compromising resolution where it matters. In the

coupled system, multiple simulations are performed (see

Sect. 4). Four processors are used for implementing the

‘‘MODEL’’ and ‘‘DA’’ components in Fig. 2.

In Fig. 6, the model horizontal currents are overlaid on

the measured velocities. This is done by converting

cylindrical model velocities to cartesian velocities, pro-

jecting them into screen coordinates, and interpolating

using a radial-basis function/splines. The projection

matrices are obtained by manually registering the model’s

geometry with the screen coordinates of the annulus.

We note that despite an obvious uncertainty in initial

conditions and other approximations, the model is capable

of capturing the gross character of flow in the physical fluid.

In addition to errors in initial conditions, and similar to

large-scale scenario, model errors will exist. For example,

the surface drag at the top is not modeled, heat may leak

from the bottom (despite an insulating rubber pad) and lat-

eral boundary conditions are imperfect. Thus, it is expected

that many flow details will be different. It will be necessary

to use measurements to continually constrain the model.

4 State estimation

At a rotation period of 6 s, fluid parcels can traverse the

annulus at up to 2 cm/s, with eddy length scales of

9–12 cm. The doubling time of the Eady growth rate

(Pedlosky 1987) of instability is *10 s. It is used as the

time period for an assimilation cycle. Since it typically

takes 8 real-seconds for a 10 s numerical simulation, and

5 s for observation (in parallel), there are 2 s left for
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Fig. 5 a Random initial conditions are used for the interior

temperature field, shown here at a given level. b Depth is discretized

with variable resolution to enhance resolution near the bottom-

boundary. Also shown are temperature curves estimated from sparse

temperature measurements on the boundary and used as lateral

boundary conditions. The bottom boundary condition is one of zero

heat flux

7.36 mm/s

Fig. 6 The measured horizontal velocity (red) at a depth of 100 mm

from the top of the tank 300 s after cooling commences and the

horizontal model velocities at the corresponding time (blue). This

marks the start of an assimilation experiment
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communication and computational activities, before which

the next forecast must be initiated. This is accomplished

by sequential filtering using additional processors, and is

described next.

Let X~t ¼ ½v~h; h~� be the state1 at a discrete time t, and

measurements Y~t be assumed to arise from a linear

observation equation Y~t ¼ HX~t þ m~t; where the observa-

tional noise is normally distributed with zero mean and

diagonal covariance Rt, that is m~t�Nð0;RtÞ: Further, let

X~
f

t be the model forecast, with error covariance Pt
f. Now

the well-known update equation for analysis state X~
a

t can

be written as:

X~
a

t ¼ X~
f

t þ Pf
t H

TðHPf
t H

T þ RÞ�1 Y~t �HX~
f

t

h i
ð5Þ

X~
a

t ¼ X~
f

t þ Ct½Y~t �HX~
f

t � ð6Þ

As shown in Gelb (1974) the Kalman and extended-

Kalman filter are given by Eqs. 5 and 6. A dimensionality

issue, however, often arises because computing and

propagating the covariance explicitly may be numerically

unfeasible even for modest sized domains. Therefore, we

seek an approach that produces effective estimates while

ameliorating the dimensionality problem. One way to

address the problem is through domain decomposition

(Demmel et al. 1997).

Another way is to use a reduced-rank spectral approxi-

mation of the forecast uncertainty. In the Ensemble Kal-

man Filter (Evensen 2003) method, for example, an

ensemble of estimates at time t - Dt are forecast to time t

using the model. Since the filter operates at time t, we will

drop the notation’s explicit dependence of time. Let us call

the forecast ensemble Vf ¼ ½X~f

1. . .X~
f

S�; where the columns

of Vf are the S samples of the ensemble of horizontal

velocities at an observed layer. Thus, if we let Vo represent

a S-column matrix of perturbed observations2, obtained by

perturbing an observation Y~ with noise m~; and eVf
be the

deviation from mean3 �V
f

of Vf, the update equation can be

written as:

Va ¼ Vf þ PfHTðHPfHT þ RÞ�1½Vo �HVf � ð7Þ

¼Vfþ eVfðHeVfÞT½HeVfðHeVfÞTþ eVo eVoT��1ðVo�HVfÞ
ð8Þ

¼ Vf@ ð9Þ

The posterior (or analysis) distribution is represented by

mean �V
a

and covariance Pa ¼ 1
S�1
eVa eVaT

: This method is

very useful because (a) the model is never linearized as in

an extended Kalman Filter. (b) Covariance is never

propagated explicitly. (c) The update equation is a

weakly nonlinear combination of the forecasts. (d) The

mixing matrix @ can be computed very efficiently using

square-root representations and will have very low-size

(typically S 9 S). For highly nonlinear systems, the large

number of Monte-Carlo simulations necessary to capture

the forecast uncertainty are often computationally not

feasible. When only a few ensemble members are used, it is

well-known that the forecast covariance can contain

spurious long-range correlations. Thus, a localized

version of the ensemble Kalman filter that filters out

long-range correlations is often implemented, which in our

paper is again based on domain decomposition.

Our estimation method consists of two phases. The first

phase, initialization, seeks to reduce a large initial uncer-

tainty in the model state to a level where model-states and

observations can be thought of as arising from similar

distributions. Initialization is based on an engineered

forecast error-covariance, and it is not propagated across

time (Eq. 6). Once initialized, we switch to the second

phase, called tracking, where an ensemble method is used.

In both phases, domain-decomposition is used; for

addressing dimensionality in initialization and for remov-

ing long-range correlations in tracking. Thus, localized

versions of Eqs. 6 and 9 will be implemented (see Fig. 7).

We now go on to discuss these steps in detail.

4.1 Initialization

We spin up a single model simulation from a random initial

temperature field (see Fig. 5). After a transient period has

elapsed, the initialization phase commences, and is repe-

ated for a few assimilation cycles. The initialization phase

consists of four steps, executed in sequence:

4.1.1 Interpolation in the vertical

An interpolation function of horizontal velocities and

temperature is estimated from the forecast. Let v~f
h½i; j; k� be

the forecast horizontal velocity at grid node i, j, k in the

radial, azimuthal and vertical directions, respectively. Let

v~f
h½i; j� be the column-vector of forecast velocities at all

Nz = 15 vertical levels corresponding to horizontal grid

location i, j and let v~fo
h ½i; j� be the corresponding vector of

horizontal velocities at the No = 5 observed vertical levels.

Similarly construct vectors h~
f
½i; j� and h~

fo
½i; j� from the

forecast temperatures. Using samples in the forecast, we

1 The state for assimilation consists of the horizontal velocities and

temperature. Vertical velocity is implicit, pressure is diagnostic and

salinity is unrepresented.
2 This formulation is discussed for its simplicity. Other variations,

e.g. explicit inverse, will be useful for small state sizes.
3 �V

f ¼ 1
S

PS
i¼1 Vf ½:; i�
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estimate the matrices kv and kh by solving equations of the

form v~f
h½i; j� ¼ kvv~fo

h ½i; j� and h~
f

h½i; j� ¼ khh~
fo

h ½i; j�:

4.1.2 Estimating horizontal velocities

at observation layers

At each observed layer ðko 2 fk1. . .k5gÞ of the fluid, ini-

tialization occurs with a deterministic scheme. Since this

step is repeated for each observation level, it is sufficient to

consider the assimilation at any single observed layer ko. At

every location i, j on the horizontal grid (Nr = 23 9

N/ = 120) of an observed layer, we estimate the horizontal

velocity from forecasts and observations using a spatial

context of dimensions Nr
l radially and N/

l azimuthally. The

estimation is written as:

v~a
h½i; j; ko� ¼ v~f

h½i; j; ko� þ P�i HT
ijðHijP

f
i H

T
ij

þ RijÞ�1 v~o;ijko

h �Hijv~
f;ijko

h

h i
ð10Þ

v~a
h½i; j; ko� ¼ v~f

h½i; j; ko� þ Cij½v~o;ijko

h �Hijv~
f;ijko

h � ð11Þ

Here, v~f;ijko

h is the vector of forecast horizontal velocities

in a Nr
l 9 N/

l area centered4 at grid node i, j, ko, and v~o;ijko

are available observations in the same area. The local

forecast covariance Pi
f is generated using a 2D Gaussian per

velocity component. It only varies radially (so as to

account for annulus borders) but not in depth ko or azimuth

j. Each local observation operator Hij selects locations

where observations are valid in the corresponding Nr
l 9 N/

l

region. The matrix Rij is the corresponding observational

uncertainty. We typically choose up to Nr
l = 5 and

N/
l = 10; motivated by the estimated auto-correlation

length-scales in the corresponding directions. Each Cij is

at most 2 9 100 and is constructed a priori5. The vector

v~f
h½i; j; ko� is the forecast horizontal velocity at location

i, j, ko and v~a
h½i; j; ko� is the corresponding estimated

(sometimes called assimilated or analysis) horizontal

velocity.

4.1.3 Estimating temperature at observation layers

Once the horizontal velocities v~a
h½i; j; ko� are estimated at

each grid node of observed layers, we compute temperature

ha[i, j, ko] by solving the elliptic equation obtained by

taking the divergence of the thermal-wind equation at each

observed layer Pedlosky (1987), given by:

ov~h

oz
¼ ga

2X
k̂ �rh ð12Þ

Here, a is the coefficient of thermal expansion and k̂ is

the vertical unit-vector.

4.1.4 Estimate full State

The precomputed vertical interpolation models are applied

to the estimated horizontal velocity and temperature. Thus,

we estimate v~a
h½i; j� ¼ kvv~ao

h ½i; j� and h~
a½i; j� ¼ khh~

ao½i; j�;
where these vectors are defined analogously to step 1 (but

using the analysis fields).

The estimated fields become the new state X~t ¼ ½v~a
h; ha~�

for the next forecast. We repeat this four step process for a

few assimilation cycles and then switch to a flow-depen-

dent ensemble tracking method that can both estimate

states and their uncertainties, as discussed next.

4.2 Tracking

Throughout the tracking phase, the steps 1, 3, and 4 remain

the same and thus are not discussed again. The only dif-

ference between initialization and tracking is the process of

constraining horizontal velocities at observed layers. For

tracking, we use a variation of the ensemble Kalman filter

in the following way:

4.2.1 Creating the ensemble

The two prominent sources of uncertainty are the thermal

boundary condition that drives the numerical system and

the flow uncertainty due to time-staggered observations

and numerical integration. To model these, we use the

output of the initialization step to drive several simulations,

each utilizing a thermal boundary condition perturbed from

the climatological profile (see Sect. 3). Additionally,

motivated by the method of snapshots (Sirovich 1987), we

also save the state every few time steps in the forward

integration of a simulation. The forecast ensemble is

C 

E 

Radius 

A
zi

m
ut

h 

Fig. 7 The estimation using the ensemble Kalman filter is localized

within estimation windows E, influenced by observations from

overlapping spatial-context windows C

4 Except near annulus boundaries, where the window is off-center.
5 A large number of matrices Cij are identical, thus saving storage

costs.
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therefore constructed as a mixture of two distributions, one

representing boundary condition uncertainty (multiple

simulations) and the other due to uncertainty in flow

(snapshots during the model integration). Assuming there

are Ns snapshots and Nb simulations, we have an ensemble

of S = Ns Nb forecast samples. These samples are used for

estimation, as we now describe.

4.2.2 Localized estimation

Akin to the localization during deterministic initialization,

we also localize the ensemble Kalman filter during tracking.

Estimation at each observed horizontal layer of the fluid ko

follows the illustration in Fig. 7. Estimates are produced

separately for each component of horizontal velocity in an

estimation window E of size Nr
e 9 N/

e indexed by location

ie, je, ko, using forecasts and observations in a spatial con-

text window C that is indexed by location ic, jc, ko and of

size Nr
c 9 N/

c . Estimates over an entire layer are produced

by tiling it with estimation windows (no overlap). Note,

however, that adjacent estimation windows share sub-

stantial spatial context, as shown in Fig. 7.

Let Vf;iejeko be the matrix representing forecast hori-

zontal velocity component of S ensemble members coin-

cident with the estimation window E at ie, je, ko, and

Vf;icjcko be the matrix of forecast horizontal velocity com-

ponents of S ensemble members coincident with the con-

text window C at ic, jc, ko. Using the observations Vo;icjcko

and forecasts in the context window to construct @icjcko
; we

may express the analysis ensemble Va;iejeko as:

Va;iejeko ¼ Vf;iejeko@icjcko
ð13Þ

In practice, because only the analysis corresponding to

the last snapshot of the current forecast of each simulation

is necessary to launch the next forecast, @icjcko
need only be

S 9 Nb in size, with an appropriately ordered ensemble.

Note that our approach is related to LEKF (Ott et al. 2003),

but with substantial differences in how estimation and

context windows are designed and used. A single

assimilation is completed within the realtime constraints.

5 Experiments

For the experiments presented here, the reference density

q0& 1, 037 kg m-3, the rotation rate is X = 1.15 rad/s, the

annulus width L = 0.15 m, the mean fluid depth

D = 0.15 m, and the mean temperature difference of fluid

across the annulus DT = 6 K (measured separately). The

viscosity is m = 10-6 m2 s-1, the thermal diffusivity j
= 10-7 m2 s-1, and the thermal expansion coefficient

a = 3 9 10-4 K-1. Thus, the Ekman number E ¼ m
2XD2 ¼

1:9�10�5; the thermal Rossby number Rh ¼ gaDTD

X2L2
¼ 0:09;

the Prandtl number Pr ¼ m
j ¼ 10: In comparison, assuming

an average of seven planetary waves on the 45�N latitude

circle, a mean tropopause height of 13.5 km, a temperature

differential of 30 K around a mean of 288 K, and an eddy

viscosity of 1 m2/s, the Ekman number is 5 9 10-5 and the

Thermal Rossby number is 0.08. Both are in good agree-

ment with the experimental regime and appropriately

small. The Prandtl number of the atmosphere (*1) is based

on the existence of a turbulent boundary layer that is not

present in the annulus experiment.

We cool the core after the fluid attains solid body

rotation. A circulation is established in about 300 s, and an

example of a well-formed circulation is shown in Fig. 6 at

a layer 100 mm below the water surface.

The MIT-GCM is started from a random initial condi-

tion with a climatological thermal-boundary condition

shown in Fig. 5. Using the parameters described in Sect. 3,

the model is integrated forward to remove transients and

establish a circulation, albeit unconstrained with measure-

ments. The horizontal velocity field at 100 mm below the

top of the tank is shown in Fig. 6 along with corresponding

observations. It shares the gross characteristics of the cir-

culation, but the waves have the wrong phase and incorrect

amplitudes. Over several experiments, we note that model

velocities can be as much as twice that of the measured

velocities.

We then turn on the assimilation component. The local

observational uncertainty Rij = ro
2 I. This uncertainty can

arise due to a number of factors. The dominant source is

vibration, and we note a 0.5 pixel jitter when tracking a

calibration grid. This implies a velocity uncertainty of

*ro = 1.2 mm/s.

During initialization, the covariance Pi
f is constructed as an

un-normalized 2D Gaussian per velocity component with

standard deviation of 1 (radially) and 2 azimuthally, with extent

of 5 grid nodes (radially) and 10 grid nodes (azimuthally). The

Gaussian is initially scaled by an amplitude of rb = ro* 2, to

account for the fact that unconstrained model velocities have

less skill than the observations. The observation operator Hij

admits grid points in the domain outside the shadow region and

where observations pass a simply quality control of being less

than 3 cm/s. Doing so excludes impulse noise, seen for

example at the edges of the shadow region in Fig. 6.

With these parameters, the deterministic assimilation

scheme is run till the root mean square error between

measured and forecast horizontal velocities over is at least

within 1.5*ro. This takes *3 assimilation cycles.

After the initialization, the system alternates with an

ensemble scheme. We run different simulations and each of

them start from the model-state estimated during initiali-

zation, but with a perturbed temperature boundary profile

and initial condition. Each simulation runs on a separate

processor of the Altix350, and integrates the model 10 s

922 Exp Fluids (2010) 48:915–925

123



forward in *8 s of clock-time. Snapshots of the model-

state (horizontal velocity and temperature) are extracted

from each simulation during the integration. Thus, at the

end of the 10- second period, an ensemble becomes

available. The final forecast (at t = 10 s) is used to esti-

mate the interpolation functions in the vertical. Observa-

tions in the immediately preceding 5 s are used in the

ensemble assimilation scheme discussed in Sect. 4. The

observational uncertainty is identical to the deterministic

case (forecast covariance is inflated). We choose at most

Nr
c = 11, and nominally select Nr

c = Nr
e = 6 and N/

c =

N/
e = 5 with S = 30. Figure 8 shows the estimated hori-

zontal velocities and observations after 10 assimilation

cycles at a depth of 100 mm from the top of the tank. The

estimate depicted here corresponds to the last snapshot of

the simulation with a climatological thermal boundary

condition profile in Fig. 5. The final time estimated model-

states are used to re-initialize it for the next 10 s forecast.

Figure 9 shows the evolving root mean square (RMS)

error between the estimated and observed velocities over 30

assimilation cycles in a 300-second assimilation experi-

ment. Please note that this graph depicts the likelihood and

not the a posteriori error between the estimate and truth,

because the truth is unknown. Nevertheless, it is a use-

ful measure in that it shows model velocities come close

to the measurements nearing the inherent uncertainty

(ro = 1.2 mm/s) with which they are observed. Indeed

both the amplitudes and phase are in good agreement, as

can be seen in Fig. 8. After 20 assimilation cycles, we turn

the assimilation off and simply compute the error between

forecast velocities and experimental measurements. As

expected this error grows, and saturates in around 10

cycles. Figure 10 shows the model and measured velocities

at t = 300 s for the ensemble member corresponding to

Fig. 8, at 100 mm above the bottom of the tank. The model

has once again departed from the system trajectory. Simi-

larly configured experiments suggest that it takes *10

rotation periods or six assimilation cycles before the model

adjusts itself to be consistent with observations.

6 Discussion and conclusions

The coupled physical-numerical system described here is an

effective way to study a variety of rotating flows. In par-

ticular, it can accommodate flows with a wide range of

thermal boundary conditions and rotation periods. The

hybrid assimilation scheme is motivated by several con-

siderations. Early analysis showed that a variational

approach (Wunsch 1996) would not meet realtime needs and

that an ensemble-filter provided the best prospect, if a large

7.36 mm/s

Fig. 8 The horizontal model velocity field of an ensemble member,

t = 200 s into the assimilation experiment, *100 mm below the

surface (blue), and corresponding measurements (red)

7.36 mm/s

Fig. 9 Once the assimilation is terminated the model diverges from

the observations. Shown here is the model velocity for an ensemble

member at 100 mm below the top of the tank (blue) and correspond-

ing measurements (red) at t = 300 s
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Fig. 10 The RMS-error between estimated and measured velocity at

observed location as a function of time
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number of numerical simulations is to be avoided. It is in this

sense that initialization and tracking are synergistic. Ini-

tialization helps condition forecast uncertainty, after which

snapshots capture the smaller of the uncertainties within the

tracking loop and boundary-condition perturbations capture

the larger uncertainty of the boundaries. In fast-evolving

flows, the flow uncertainty starts to dominate, but in slowly

evolving flows, the boundary-condition uncertainty domi-

nates. In any flow situation, the use of the proposed scheme

prevents an ensemble collapse by maintaining a justifiable

representation of the uncertainty. Further, the proposed

representation requires fewer numerical simulations than

purely sampling initial conditions and produces well-ranked

ensembles during assimilation.

Our system scales to a variety of experiments and flows.

The PIV and MIT-GCM are parallelizable beyond that

described here. In our assimilation approach, localization

not only prevents spurious long-range correlations but also

lends to an easily parallelizable algorithm. Updates in

individual windows are performed in parallel. Realtime

performance is achieved here through parallelism (obser-

vations), domain-decomposition (model, estimation),

spectral-reduction (estimation) an efficient method to

generate samples and compute updates (estimation).

There is, however, a computational trade-off in locali-

zation. If we choose a window with W grid nodes and have

S ensemble members at hand, the complexity of initiali-

zation is O(W2) and of tracking is O(WS2). Thus, we may

prefer a smaller window (initialization) or ensemble size

(tracking). Care must be taken nonetheless because the

window size must not be so small as to lose the advantages

that correlations in the model’s field offers estimation and

the same argument holds for the ensemble size. The present

system can thus scale with the addition of computational

resources.

There are also several limitations of the existing system.

The domain boundaries are not resolved at high resolution,

which may be essential for certain flows. Adaptive reso-

lution in PIV, the model and assimilation is a promising

direction. Temperature measurements have not been used,

except to provide climatological temperature boundary

conditions. Newer methods for whole-field LIF measure-

ments or sparse measurements for assimilation or verifi-

cation would be useful. We presently observe 5 layers, in

large-part due to the latency associated with physical motor

movement. A newer periscope design with a rotating

mirror and paraboloid will improve the scan speed many

fold. The assimilation method uses a fixed local context. A

multiscale extension and comparisons with contemporary

methods is beyond the scope of this paper but will appear

in a forthcoming article.

Even without these improvements, our observatory

works remarkably well to produce state estimates

consistent with the observations in the current application,

and with largely off-the-shelf and relatively inexpensive

components. Thus, the analog serves as a new, easy-to-use,

testbed to explore annulus dynamics and analysis tech-

niques. To the best of our knowledge, a realtime observa-

tory of this kind has not been achieved before.
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